# Master in Actuarial Science 

Models in Finance

04-02-2020
Time allowed: Two hours (120 minutes)

Solutions and hints for solutions

1. .
(a) The discounted price is $\widetilde{S}_{t}=e^{-r t} S_{t}=e^{-r t} S_{0} \exp \left(g(t)+k B_{t}\right)$. By Itô's lemma (or Itô's formula) applied to $f(t, x)=e^{-r t} \exp (g(t)+$ $k B)$ (it is a $C^{1,2}$ function), after some calculations, we obtain:

$$
d \widetilde{S}_{t}=\left(g^{\prime}(t)+\frac{1}{2} k^{2}-r\right) \widetilde{S}_{t} d t+k \widetilde{S}_{t} d B_{t}
$$

(b) The discounted price process $\widetilde{S}_{t}$ is a martingale if and only if the drift coefficient in the SDE is zero, that is, $g^{\prime}(t)+\frac{1}{2} k^{2}-r=0$. In this case,

$$
\widetilde{S}_{t}=\widetilde{S}_{0}+k \int \widetilde{S}_{u} d B_{u}
$$

and the stochastic integral is a martingale. The function that satisfies $g^{\prime}(t)+\frac{1}{2} k^{2}-r=0$ is

$$
g(t)=\left(r-\frac{1}{2} k^{2}\right) t+C
$$

but at time 0 , we have $S_{0}=S_{0} \exp \left\{g(0)+k B_{0}\right\}$ and therefore

$$
g(t)=\left(r-\frac{1}{2} k^{2}\right) t
$$

Moreover, if $\widetilde{S}_{t}$ is a martingale, then $\mathbb{E}\left[S_{t}\right]=e^{r t} S_{0}$.
2. .
(a) Answer is in the slides - check it out.
(b) The put-call parity:

$$
c_{t}+K e^{-r(T-t)}=p_{t}+S_{t} .
$$

Now, if we take partial derivatives with respect to $S$, we can show that we obtain $\Delta_{c}=\Delta_{p}+1$ and $\Gamma_{c}=\Gamma_{p}$.
In the dividend case, using the same procedure with the putcall parity with dividends, we can show that we obtain $\Delta_{c}=$ $\Delta_{p}+e^{-q(T-t)}$ and $\Gamma_{c}=\Gamma_{p}$.
3. .
(a) The delta of a call option can be derived from the Black-Scholes formula and is given by $\Delta=\frac{\partial c_{t}}{\partial S_{t}}=\Phi\left(d_{1}\right)$, where

$$
d_{1}=\frac{\ln \left(\frac{S_{t}}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}=-0.0798747 .
$$

Therefore,

$$
\Delta=\Phi(-0.0798747)=0.4682
$$

The option price is given by:

$$
\begin{aligned}
c_{t} & =S_{t} \Phi\left(d_{1}\right)-K e^{-r(T-t)} \Phi\left(d_{2}\right)= \\
& =0.6365
\end{aligned}
$$

where $d_{2}=-0.3035$. The hedging portfolio is: $\Delta \times$ number of options $=4682$ units of stock and $10000 \times 0.6365-4682 \times 9=$ $-35773 €$ in cash.
(b) The dynamics of the stock prices $S_{t}$ under $Q$ is given by the SDE

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d \bar{W}_{t}
$$

where $\bar{W}_{t}$ is a standard Brownian motion under the risk neutral measure (or equivalent martingale measure) $Q$. By Itô formula applied to $X_{t}=\ln \left(S_{t}\right)$, we can show that

$$
X_{T}=\ln \left(S_{t}\right)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)+\sigma\left(\bar{W}_{T}-\bar{W}_{t}\right) .
$$

The price of the derivative is given by

$$
\begin{aligned}
& F\left(t, S_{t}\right)=e^{-r(T-t)} E_{\mathbb{Q}}\left[K \mathbf{1}_{\left\{S_{T}>e^{K}\right\}}+\ln \left(S_{T}\right) \mathbf{1}_{\left\{S_{T} \leq e^{K}\right\}} \mid \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)}\left\{E_{\mathbb{Q}}\left[\ln \left(S_{T}\right) \mathbf{1}_{\left\{S_{T} \leq e^{K}\right\}} \mid S_{t}\right]+K P_{\mathbb{Q}}\left[S_{T}>e^{K} \mid S_{t}\right]\right\} .
\end{aligned}
$$

Moreover, since $Z=\frac{X_{T}-\ln \left(S_{t}\right)-\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \sim N(0,1)$ and $X_{T} \leq$ $K$ is equivalent to $Z \leq K^{*}$ with $K^{*}=\frac{K-\ln \left(S_{t}\right)-\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}$, we have that

$$
E_{\mathbb{Q}}\left[\ln \left(S_{T}\right) \mathbf{1}_{\left\{S_{T} \leq e^{K}\right\}} \mid S_{t}\right]=\int_{-\infty}^{K^{*}}\left(\ln \left(S_{t}\right)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)+\sigma z \sqrt{T-t}\right) f(z) d z
$$

where $f(z)$ is the pdf of $N(0,1)$.
On the other hand,

$$
P_{\mathbb{Q}}\left[S_{T}>e^{K} \mid S_{t}\right]=P_{\mathbb{Q}}\left[X_{T}>K \mid S_{t}\right]=1-\Phi\left(K^{*}\right),
$$

where $\Phi$ is the cumulative distribution function of $N(0,1)$.
Therefore,

$$
\begin{aligned}
F\left(t, S_{t}\right) & =e^{-r(T-t)} \int_{-\infty}^{K^{*}}\left(\ln \left(S_{t}\right)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)+\sigma z \sqrt{T-t}\right) f(z) d z \\
& +e^{-r(T-t)} K\left[1-\Phi\left(K^{*}\right)\right]
\end{aligned}
$$

4. The answer in in the slides. Check it out.
5. .

$$
B(t, T)=\exp \left[-\int_{t}^{T} f(t, u) d u\right]
$$

Therefore

$$
\begin{aligned}
B(t, T) & =\exp \left[-\int_{t}^{T}\left(r(t)-\alpha(u-t)^{2}\right) d u\right] \\
& =\exp \left[-r(t)(T-t)+\frac{\alpha}{3}(T-t)^{3}\right] \\
R(t, T) & =\frac{-1}{T-t} \log B(t, T) \quad \text { if } t<T
\end{aligned}
$$

and therefore

$$
R(t, T)=r(t)-\frac{\alpha}{3}(T-t)^{2}
$$

Now, let $r(t)=0.25, \alpha=0.01$ and $T-t=3$. Then $B(t, T) .=0.5169$ and $R(t, T)=0.22$.
6. .
(a) The answer is in the slides. Check it out.
(b) Let $B(t, T)$ be the price at time $t$ of a zero-coupon bond. We consider a recovery rate $\delta$. Then there exists a risk-neutral measure $Q$ equivalent to $P$, under which:

$$
\begin{aligned}
B(t, T) & =e^{-r(T-t)} E_{Q}\left[\text { Payoff at } T \mid \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} E_{Q}\left[1-(1-\delta) N(T) \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

One can prove that

$$
E_{Q}[N(T) \mid N(t)=0]=E_{Q}\left[1-\exp \left(-\int_{t}^{T} \tilde{\lambda}(s) d s\right)\right] .
$$

Hence, assuming that $\tilde{\lambda}(s)$ is deterministic, this implies that:

$$
B(t, T)=e^{-r(T-t)}\left[1-(1-\delta)\left(1-\exp \left(-\int_{t}^{T} \widetilde{\lambda}(s) d s\right)\right)\right]
$$

Comparing with the zero coupon bond price in our particular case, we have that

$$
\int_{t}^{T} \widetilde{\lambda}(s) d s=T^{3 / 2}-t^{3 / 2}
$$

and therefore, $\widetilde{\lambda}(s)=\frac{2}{3} s^{1 / 2}$.

