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Solutions and hints for solutions

1. .

(a) The discounted price is S; = e "5, = e "Syexp (9(t) + kBy).
By It6’s lemma (or Ito’s formula) applied to f(¢,x) = e " exp(g(t)+
kB) (it is a C1? function), after some calculations, we obtain:

~ 1 - ~
dSt = (gl(t) + 5]{32 - T‘) Stdt + k‘StdBt

(b) The discounted price process S isa martingale if and only if the
drift coefficient in the SDE is zero, that is, ¢'(¢) + %kz —r=0.
In this case,

5=+ [ Sudb..

and the stochastic integral is a martingale. The function that
satisfies ¢'(t) + k%> —r =0 is

Lo

gty =|r— ik t+C,
but at time 0, we have Sy = Spexp {g (0) + kBy} and therefore
1
t)=(r— k|t
9(t) <T 5 )
Moreover, if S; is a martingale, then E [S] = e"S;.
2. .

(a) Answer is in the slides - check it out.



(b)

The put-call parity:
Ct + KG_T(T_t) = Dt + St.

Now, if we take partial derivatives with respect to S, we can show
that we obtain A, = A, +1 and I'c =T,

In the dividend case, using the same procedure with the put-
call parity with dividends, we can show that we obtain A, =
Ap+e T and T, =T,

The delta of a call option can be derived from the Black-Scholes

formula and is given by A = g—gft = & (d;), where

I (5) + (r+%) (-1
di = = —0.0798747.
oVT —t
Therefore,

A = ®(—0.0798747) = 0.4682
The option price is given by:

¢ = S5i® (dy) — Ke " T Vd (dy) =
= 0.6365,
where dy = —0.3035. The hedging portfolio is: Axnumber of

options = 4682 units of stock and 10000 x 0.6365 — 4682 x 9 =
—35773€ in cash.

The dynamics of the stock prices Sy under @ is given by the SDE
dSt == ’f’St dt + O'St th,

where W, is a standard Brownian motion under the risk neutral
measure (or equivalent martingale measure) (. By It6 formula
applied to Xy = In (S;), we can show that

2

Xp = In(S) + (r—02> (T—t)+ o (Wr—TW).

The price of the derivative is given by
Ja (t, St) _ e*T(T*t)EQ [K1{5T>6K} + In (ST) 1{ST§€K}|’Ft:|

=T {E@ [ln (Sr) 1{ST§eK}|St} + K Py [Sr > ¢"|5] } '



4.

62
XT—ln(St)—(T‘—T)(T—t) ~ N(O’ 1) and XT <

Moreover, since Z =

oVT—t
K i oo e e K- (r-5) (=)
is equivalent to Z < K* with K* = s , we
have that
K* o2
EQ |:111 (ST) 1{ST§€K}’St:| = / (111 (St) + <T - 2> (T - t) + O'Z\/T - t) f(Z)dZ

where f(z) is the pdf of N(0,1).
On the other hand,

Py [Sr > ef|S] = Py [Xr > K|S] =1 — @ (K*),

where @ is the cumulative distribution function of N(0,1).
Therefore,

F(t,8) =e T /K <]n (Sy) + (r — U;) (T —t)+ UZ\/ﬁ) f(2)dz

—00

+e " THVK[1 - & (K")].

The answer in in the slides. Check it out.

o. .

B(,T) = exp [—/tTf(t,u)du].
Therefore
B (t,T) = exp {— /tT (r(t) —a(u— t)2> du]
= exp [—r(t)(T ) + 5 (T = 1)°]

—1
T—1t

R(t,T) = log B(t,T) ift<T

and therefore

R(t,T) = r(t) - % (T —1)2.

Now, let r(t) = 0.25, « = 0.01 and T'—t = 3. Then B (¢,7). = 0.5169
and R (¢, T) = 0.22.

(a) The answer is in the slides. Check it out.



(b) Let B(t,T) be the price at time ¢ of a zero-coupon bond. We con-
sider a recovery rate d. Then there exists a risk-neutral measure
Q) equivalent to P, under which:

B(t,T) = e_”(T_t)EQ [Payof f at T|F]
= e "TVEG[1 - (1-68)N(T)|F.

One can prove that
T ~
EqQ[N(T)|N(t)=0] = Eg {1 — exp (—/ A(s) ds)] .
t
Hence, assuming that hy (s) is deterministic, this implies that:

B(t,T) =¢ "T-1 [1 —(1-46) (1 — exp <— /tTX (s) ds)ﬂ .

Comparing with the zero coupon bond price in our particular
case, we have that

T~
/ X(s)ds = T3 — 32
t

and therefore,  (s) = %81/2.



