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Solutions and hints for solutions

1. .

(a) The discounted price is S̃t = e−rtSt = e−rtS0 exp (g(t) + kBt).
By Itô’s lemma (or Itô’s formula) applied to f(t, x) = e−rt exp(g(t)+
kB) (it is a C1,2 function), after some calculations, we obtain:

dS̃t =

(
g′(t) +

1

2
k2 − r

)
S̃tdt+ kS̃tdBt.

(b) The discounted price process S̃t is a martingale if and only if the
drift coefficient in the SDE is zero, that is, g′(t) + 1

2k
2 − r = 0.

In this case,

S̃t = S̃0 + k

∫
S̃udBu,

and the stochastic integral is a martingale. The function that
satisfies g′(t) + 1

2k
2 − r = 0 is

g(t) =

(
r − 1

2
k2
)
t+ C,

but at time 0, we have S0 = S0 exp {g (0) + kB0} and therefore

g(t) =

(
r − 1

2
k2
)
t.

Moreover, if S̃t is a martingale, then E [St] = ertS0.

2. .

(a) Answer is in the slides - check it out.
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(b) The put-call parity:

ct +Ke−r(T−t) = pt + St.

Now, if we take partial derivatives with respect to S, we can show
that we obtain ∆c = ∆p + 1 and Γc = Γp.

In the dividend case, using the same procedure with the put-
call parity with dividends, we can show that we obtain ∆c =
∆p + e−q(T−t) and Γc = Γp.

3. .

(a) The delta of a call option can be derived from the Black-Scholes
formula and is given by ∆ = ∂ct

∂St
= Φ (d1), where

d1 =
ln
(
St
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

= −0.0798747.

Therefore,
∆ = Φ (−0.0798747) = 0.4682

The option price is given by:

ct = StΦ (d1)−Ke−r(T−t)Φ (d2) =

= 0.6365,

where d2 = −0.3035. The hedging portfolio is: ∆×number of
options = 4682 units of stock and 10000 × 0.6365 − 4682 × 9 =
−35773e in cash.

(b) The dynamics of the stock prices St under Q is given by the SDE

dSt = r St dt+ σ St dW t,

where W t is a standard Brownian motion under the risk neutral
measure (or equivalent martingale measure) Q. By Itô formula
applied to Xt = ln (St), we can show that

XT = ln (St) +

(
r − σ2

2

)
(T − t) + σ

(
W T −W t

)
.

The price of the derivative is given by

F (t, St) = e−r(T−t)EQ

[
K1{ST>eK} + ln (ST )1{ST≤eK}|Ft

]
= e−r(T−t)

{
EQ

[
ln (ST )1{ST≤eK}|St

]
+KPQ

[
ST > eK |St

]}
.
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Moreover, since Z =
XT−ln(St)−

(
r−σ

2

2

)
(T−t)

σ
√
T−t ∼ N(0, 1) and XT ≤

K is equivalent to Z ≤ K∗ with K∗ =
K−ln(St)−

(
r−σ

2

2

)
(T−t)

σ
√
T−t , we

have that

EQ

[
ln (ST )1{ST≤eK}|St

]
=

∫ K∗

−∞

(
ln (St) +

(
r − σ2

2

)
(T − t) + σz

√
T − t

)
f(z)dz.

where f(z) is the pdf of N(0, 1).

On the other hand,

PQ
[
ST > eK |St

]
= PQ [XT > K|St] = 1− Φ (K∗) ,

where Φ is the cumulative distribution function of N(0, 1).

Therefore,

F (t, St) = e−r(T−t)
∫ K∗

−∞

(
ln (St) +

(
r − σ2

2

)
(T − t) + σz

√
T − t

)
f(z)dz

+ e−r(T−t)K [1− Φ (K∗)] .

4. The answer in in the slides. Check it out.

5. .

B (t, T ) = exp

[
−
∫ T

t
f (t, u) du

]
.

Therefore

B (t, T ) = exp

[
−
∫ T

t

(
r(t)− α (u− t)2

)
du

]
= exp

[
−r(t)(T − t) +

α

3
(T − t)3

]
R(t, T ) =

−1

T − t
logB(t, T ) if t < T

and therefore
R(t, T ) = r(t)− α

3
(T − t)2 .

Now, let r(t) = 0.25, α = 0.01 and T − t = 3. Then B (t, T ) . = 0.5169
and R (t, T ) = 0.22.

6. .

(a) The answer is in the slides. Check it out.
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(b) Let B(t, T ) be the price at time t of a zero-coupon bond. We con-
sider a recovery rate δ. Then there exists a risk-neutral measure
Q equivalent to P , under which:

B(t, T ) = e−r(T−t)EQ [Payoff at T |Ft]
= e−r(T−t)EQ [1− (1− δ)N (T ) |Ft] .

One can prove that

EQ [N (T ) |N(t) = 0] = EQ

[
1− exp

(
−
∫ T

t
λ̃ (s) ds

)]
.

Hence, assuming that λ̃ (s) is deterministic, this implies that:

B(t, T ) = e−r(T−t)
[
1− (1− δ)

(
1− exp

(
−
∫ T

t
λ̃ (s) ds

))]
.

Comparing with the zero coupon bond price in our particular
case, we have that ∫ T

t
λ̃ (s) ds = T 3/2 − t3/2

and therefore, λ̃ (s) = 2
3s

1/2.
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