Probability Theory and Stochastic Processes

LIST 6
 Martingales

(1) Let X_{1}, X_{2}, \ldots be a martingale with respect to the filtration $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$. Show that:
(a) If $X_{0}=E\left(X_{1}\right)$ and $\mathcal{F}_{0}=\{\emptyset, \Omega\}$, then $X_{0}, X_{1}, X_{2}, \ldots$ is a martingale with respect to the filtration $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$.
(b) X_{n} is a martingale with respect to $\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(2) Let Y_{1}, Y_{2}, \ldots be independent random variables such that

$$
\begin{gathered}
P\left(Y_{n}=a_{n}\right)=\frac{1}{2 n^{2}} \\
P\left(Y_{n}=0\right)=1-\frac{1}{n^{2}} \\
P\left(Y_{n}=-a_{n}\right)=\frac{1}{2 n^{2}}
\end{gathered}
$$

where $a_{1}=2, a_{n}=4 \sum_{j=1}^{n-1} a_{j}$. Decide if X_{n} and $\sigma\left(Y_{1}, \ldots, Y_{n}\right)$ define a martingale when
(a) $X_{n}=\sum_{j=1}^{n} Y_{j}$.
(b) $X_{n}=\sum_{j=1}^{n} \frac{1}{2^{j}} Y_{j}$.
(c) $X_{n}=\sum_{j=1}^{n} Y_{j}^{2}$.
(3) Let Y_{1}, Y_{2}, \ldots be a sequence of iid random variables such that $P\left(Y_{n}=1\right)=p$ and $P\left(Y_{n}=-1\right)=1-p$. Let $S_{n}=\sum_{j=1}^{n} Y_{j}$.
Decide if X_{n} and $\sigma\left(Y_{1}, \ldots, Y_{n}\right)$ define a martingale when
(a) $X_{n}=S_{n}$.
(b) $X_{n}=S_{n}^{2}-n$.
(c) $X_{n}=(-1)^{n} \cos \left(\pi S_{n}\right)$.
(d) $X_{n}=\left(\frac{1-p}{p}\right)^{S_{n}}$.
(e) $X_{n}=S_{n}-(2 p-1) n$.
(4) Let Y_{1}, Y_{2}, \ldots be a sequence of iid random variables with Poisson distribution and mean value λ. Consider also the sequence

$$
X_{n}=X_{n-1}+Y_{n}-1, \quad n \in \mathbb{N},
$$

and $X_{0}=0$. Find the values of λ for which X_{n} is a martingale, sub-martingale or super-martingale, with respect to the filtration $\sigma\left(Y_{1}, \ldots, Y_{n}\right)$.
(5) Let X_{n} be a martingale with respect to the filtration \mathcal{F}_{n} and τ is a stopping time. Determine $E\left(X_{\tau \wedge n}\right)$.
(6) Let Y_{1}, Y_{2}, \ldots be a sequence of iid random variables with distribution $P\left(Y_{n}=1\right)=p$ and $P\left(Y_{n}=-1\right)=1-p$ where $0<p<1$, and $X_{n}=\sum_{j=1}^{n} Y_{j}$. Compute $E(\tau)$ for the stopping time

$$
\tau=\min \left\{n \geq 1: X_{n}=1\right\}
$$

when
(a) $p \leq 1 / 2$. Hint: Use Wald's equation (when $p<1 / 2$ try also using the optional stopping theorem for $Z_{n}=[(1-$ p) $/ p]^{X_{n}}$.
(b) ${ }^{*} p>1 / 2$. Hint: Use the optional stopping theorem for $Z_{n}=X_{n}-(2 p-1) n$. Look first at an application of the optional stopping theorem for $Z_{\tau \wedge n}$ in order to show that $E(\tau \wedge n)$ is bounded. Then take the same conclusion for $E(\tau)$.
(7) Let X_{n} be a martingale with respect to a filtration \mathcal{F}_{n}. Prove that $E\left(X_{n+j} \mid \mathcal{F}_{n}\right)=X_{n}$ for all $n, j \in \mathbb{N}$.

