Probability Theory and Stochastic Processes

LIST 6

Martingales

- (1) Let X_1, X_2, \ldots be a martingale with respect to the filtration $\mathcal{F}_1, \mathcal{F}_2, \ldots$ Show that:
 - (a) If $X_0 = E(X_1)$ and $\mathcal{F}_0 = \{\emptyset, \Omega\}$, then X_0, X_1, X_2, \ldots is a martingale with respect to the filtration $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \dots$
 - (b) X_n is a martingale with respect to $\sigma(X_1, \ldots, X_n)$.
- (2) Let Y_1, Y_2, \ldots be independent random variables such that

$$P(Y_n = a_n) = \frac{1}{2n^2}$$

$$P(Y_n = 0) = 1 - \frac{1}{n^2}$$

$$P(Y_n = -a_n) = \frac{1}{2n^2}$$

where $a_1 = 2$, $a_n = 4 \sum_{j=1}^{n-1} a_j$. Decide if X_n and $\sigma(Y_1, \dots, Y_n)$ define a martingale when

- (a) $X_n = \sum_{j=1}^n Y_j$.
- (b) $X_n = \sum_{j=1}^n \frac{1}{2^j} Y_j$.
- (c) $X_n = \sum_{j=1}^n Y_j^2$.
- (3) Let Y_1, Y_2, \ldots be a sequence of iid random variables such that $P(Y_n = 1) = p$ and $P(Y_n = -1) = 1 - p$. Let $S_n = \sum_{j=1}^{n} Y_j$.

Decide if X_n and $\sigma(Y_1, \ldots, Y_n)$ define a martingale when

- (a) $X_n = S_n$.
- (b) $X_n = S_n^2 n$.
- (c) $X_n = (-1)^n \cos(\pi S_n)$. (d) $X_n = \left(\frac{1-p}{p}\right)^{S_n}$.
- (4) Let Y_1, Y_2, \ldots be a sequence of iid random variables with Poisson distribution and mean value λ . Consider also the sequence

$$X_n = X_{n-1} + Y_n - 1, \quad n \in \mathbb{N},$$

- and $X_0 = 0$. Find the values of λ for which X_n is a martingale, sub-martingale or super-martingale, with respect to the filtration $\sigma(Y_1, \ldots, Y_n)$.
- (5) Let X_n be a martingale with respect to the filtration \mathcal{F}_n and τ is a stopping time. Determine $E(X_{\tau \wedge n})$.
- (6) Let $Y_1, Y_2, ...$ be a sequence of iid random variables with distribution $P(Y_n = 1) = p$ and $P(Y_n = -1) = 1 p$ where $0 , and <math>X_n = \sum_{j=1}^n Y_j$. Compute $E(\tau)$ for the stopping time

$$\tau = \min\{n \ge 1 \colon X_n = 1\}$$

when

- (a) $p \leq 1/2$. Hint: Use Wald's equation (when p < 1/2 try also using the optional stopping theorem for $Z_n = [(1 p)/p]^{X_n}$).
- (b) * p > 1/2. Hint: Use the optional stopping theorem for $Z_n = X_n (2p-1)n$. Look first at an application of the optional stopping theorem for $Z_{\tau \wedge n}$ in order to show that $E(\tau \wedge n)$ is bounded. Then take the same conclusion for $E(\tau)$.
- (7) Let X_n be a martingale with respect to a filtration \mathcal{F}_n . Prove that $E(X_{n+j}|\mathcal{F}_n) = X_n$ for all $n, j \in \mathbb{N}$.