Probability Theory and Stochastic Processes

Solutions

List 1

1) a) yes b) yes c) yes
2) 2^{n}
3) yes, no
4) yes
5) a) Since $\sigma\left(\mathcal{A}_{2}\right)$ is a σ-algebra that contains \mathcal{A}_{2}, it also contains \mathcal{A}_{1}. Moreover, as $\sigma\left(\mathcal{A}_{1}\right)$ is the intersection of all σ-algebras containing \mathcal{A}_{1}, it must be inside $\sigma\left(\mathcal{A}_{2}\right)$.
b) This follows because $\sigma(\mathcal{A})$ is already a σ-algebra.
c) Recall that $\mathcal{B}=\sigma(\mathcal{I})$ where \mathcal{I} is the collection of all intervals on the form $] a, b]$. From

$$
\left[a,+\infty\left[=\left(\bigcup_{n \in \mathbb{N}}\right]-\infty, a-\frac{1}{n}\right]\right)^{c}
$$

it follows that $\mathcal{A} \subset \sigma(\mathcal{I})$. Furthermore,

$$
\begin{aligned}
] a, b] & =] a,+\infty[\cap] b,+\infty\left[^{c}\right. \\
& =\left(\bigcup _ { n \in \mathbb { N } } \left[a+\frac{1}{n},+\infty[) \cap\left(\bigcup _ { n \in \mathbb { N } } \left[b+\frac{1}{n},+\infty[)^{c}\right.\right.\right.\right.
\end{aligned}
$$

So, $\mathcal{I} \subset \sigma(\mathcal{A})$. By $(\mathrm{a}), \sigma(\mathcal{A})=\mathcal{B}$.
7) see lecture notes
8) yes, no

List 2

1)
2)
3)
4) a)
b)
5)
6) a) yes
b) $f\left(a_{1}\right)+f\left(a_{2}\right)+f\left(a_{3}\right)$
7)
8)
9) a) Let $\psi=f-g$ so that ψ is \mathcal{F}-measurable and $\int_{B} \psi d \mu=0$ for every $B \in \mathcal{F}$. Consider the measurable set

$$
B=\left\{\psi^{+}>0\right\} \in \mathcal{F}
$$

by writing $\psi^{+}=\max \{\psi, 0\}$ which is also \mathcal{F}-measurable. Notice that $B=\left\{\psi=\psi^{+}>0\right\}$ and $\int_{B} \psi d \mu=0$. In addition, take

$$
B_{n}=\left\{\psi^{+} \geq \frac{1}{n}\right\} \in \mathcal{F}
$$

Hence, $B_{n} \uparrow B$. So, using the Markov inequality,

$$
0 \leq \mu\left(B_{n}\right) \leq n \int_{B_{n}} \psi^{+} d \mu \leq n \int_{B} \psi^{+} d \mu=n \int_{B} \psi d \mu=0
$$

Then, $\mu(B)=\lim \mu\left(B_{n}\right)=0$ which means that $\psi^{+}=0 \mu$-a.e. The same idea for ψ^{-}implies that $\psi=0 \mu$-a.e.
b) Let $\Omega=[0,1], \mathcal{A}=\{\emptyset, \Omega\}$ and $\mathcal{F}=\mathcal{B}(\Omega)$. Take the Lebesgue measure m on Ω. Consider $h(x)=1 / 2$ and $f(x)=x$. For any $A \in \mathcal{A}$, we have $\int_{A} h d m=\int_{A} f d m$. However, $f \neq h m$-a.e.
10) a) 0
b) $\arctan \pi$
c) 0
d) $1 / 2$
e) 1

List 3

1) a)

$$
F(x)= \begin{cases}0, & x<2 \\ \frac{1}{3}, & 2 \leq x<3 \\ 1, & x \geq 3\end{cases}
$$

b)

$$
F(x)= \begin{cases}0, & x<0 \\ \frac{1}{3} x, & 0 \leq x<1 \\ \frac{1}{3}, & 1 \leq x<2 \\ \frac{2}{3}, & 2 \leq x<3 \\ 1, & x \geq 3\end{cases}
$$

2) a) For each $x \in D$ we have $F\left(x^{-}\right)<r_{x}<F\left(x^{+}\right)$for some choice of a rational number $r_{x} \in \mathbb{Q}$ (for example, take r_{x} to be the number with the smallest possible number of decimal places of $\left(F\left(x^{-}\right)+F\left(x^{+}\right) / 2\right)$.

We can define a function $g: D \rightarrow \mathbb{Q}$ given by $g(x)=r_{x}$. Thus, for $x_{1}<x_{2}$ both in D we have $g\left(x_{1}\right)<F\left(x_{1}^{+}\right) \leq F\left(x_{2}^{-}\right)<g\left(x_{2}\right)$, meaning that g is strictly increasing. Therefore, g is a bijection between D and $g(D) \subset \mathbb{Q}$ and D is countable.
b) $\alpha(\{x\})=F(x)-F\left(x^{-}\right)=0$
3)
4)
5) a) $\phi(t)=e^{i t a}$
b) $\left(1-p+p e^{i t}\right)^{n}$
c) $e^{\lambda\left(e^{i t}-1\right)}$
d) $p /\left(1-(1-p) e^{i t}\right)$
e) $p n /\left(1-(1-p) e^{i t}\right)^{n}$
6) a)

$$
\phi(t)=\frac{e^{i t b}-e^{i t a}}{(b-a) i t}
$$

b) $1 /(1-i t)$
c) $1 /\left(1+t^{2}\right)$
d) $e^{-|t|}$
e) $e^{i t \mu-\sigma^{2} t^{2} / 2}$

List 4

1) a) Notice that $f(x) \in B$ is equivalent to $x \in f^{-1}(B)$. So, for any $B_{1}, B_{2} \in \mathcal{B}$,

$$
P\left(f(X) \in B_{1}, g(Y) \in B_{2}\right)=P\left(X \in f^{-1}\left(B_{1}\right), Y \in g^{-1}\left(B_{2}\right)\right)
$$

Since X, Y are independent we get that

$$
P\left(X \in f^{-1}\left(B_{1}\right), Y \in g^{-1}\left(B_{2}\right)\right)=P\left(X \in f^{-1}\left(B_{1}\right)\right) P\left(Y \in g^{-1}\left(B_{2}\right)\right)
$$

Thus, $f(X), g(Y)$ are also independent.
b) Since by a) $f(X), g(Y)$ are independent, then $E(f(X) g(Y))=$ $E(f(X)) E(g(Y))$.
2) The characteristic function is $\phi(t)=e^{-|t|}$. So, for $S_{n} / n=\left(X_{1}+\right.$ $\left.\cdots+X_{n}\right) / n$ we have the characteristic function

$$
\phi_{n}(t)=(\phi(t / n))^{n}=e^{-|t|}
$$

Therefore, for any $n, S_{n} / n$ has the Cauchy distribution as well, and the limit distribution is not the normal distribution.
3) e^{-1}
4) 0
5) b) $\frac{1}{2} \mathcal{X}_{C}+\frac{3}{2} \mathcal{X}_{C^{c}}$
c) 1

List 5

4) a) Stationary distribution: $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ where

$$
\alpha_{1}=\frac{1-r}{2-r}, \quad \alpha_{i}=\frac{1}{2^{i-1}(2-r)}, \quad i \geq 2
$$

5) a) $S=R_{+}, \tau_{1}=4=\tau_{3}, \tau_{2}=2$
b) $S=R_{+}, \tau_{1}=\tau_{2}=\tau_{3}=\frac{1}{4}$

List 6

2) a) Yes.
b) Yes.
c) No. Just define a sub-martingale.
3) a) X_{n} is a martingale if $p=1 / 2$, a super-martingale if $0<p<1 / 2$, and a sub-martingale if $1 / 2<p<1$.
b) X_{n} is a martingale if $p=1 / 2$.
c) Yes.
d) Yes.
4. If $\lambda=1, X_{n}$ is a martingale. If $\lambda \geq 1, X_{n}$ is a sub-martingale, and if $\lambda \leq 1, X_{n}$ is a super-martingale.
5. $E\left(X_{\tau \wedge n}\right)=E\left(X_{1}\right)$
6)

$$
E(\tau)= \begin{cases}+\infty, & p \leq \frac{1}{2} \\ \frac{1}{2 p-1}, & p>\frac{1}{2}\end{cases}
$$

