Probability Theory and Stochastic Processes Solutions

List 1

1) a) yes b) yes c) yes

3) 2^{n}

4) yes, no

5) yes

6) a) Since $\sigma(\mathcal{A}_2)$ is a σ -algebra that contains \mathcal{A}_2 , it also contains \mathcal{A}_1 . Moreover, as $\sigma(\mathcal{A}_1)$ is the intersection of all σ -algebras containing \mathcal{A}_1 , it must be inside $\sigma(\mathcal{A}_2)$.

b) This follows because $\sigma(\mathcal{A})$ is already a σ -algebra.

c) Recall that $\mathcal{B} = \sigma(\mathcal{I})$ where \mathcal{I} is the collection of all intervals on the form [a, b]. From

$$[a, +\infty[=\left(\bigcup_{n\in\mathbb{N}}\right]-\infty, a-\frac{1}{n}\right]\right)^c,$$

it follows that $\mathcal{A} \subset \sigma(\mathcal{I})$. Furthermore,

$$[a,b] =]a, +\infty[\cap]b, +\infty[^{c}]$$
$$= \left(\bigcup_{n \in \mathbb{N}} \left[a + \frac{1}{n}, +\infty\right[\right) \cap \left(\bigcup_{n \in \mathbb{N}} \left[b + \frac{1}{n}, +\infty\right[\right)^{c}\right]$$

So, $\mathcal{I} \subset \sigma(\mathcal{A})$. By (a), $\sigma(\mathcal{A}) = \mathcal{B}$.

7) see lecture notes
8) yes, no
List 2
1)
2)
3)
4) a)
b)
5)
6) a) yes
b) f(a₁) + f(a₂) + f(a₃)
7)
8)

9) a) Let $\psi = f - g$ so that ψ is \mathcal{F} -measurable and $\int_B \psi \, d\mu = 0$ for every $B \in \mathcal{F}$. Consider the measurable set

$$B = \left\{\psi^+ > 0\right\} \in \mathcal{F}$$

by writing $\psi^+ = \max\{\psi, 0\}$ which is also \mathcal{F} -measurable. Notice that $B = \{\psi = \psi^+ > 0\}$ and $\int_B \psi \, d\mu = 0$. In addition, take

$$B_n = \left\{ \psi^+ \ge \frac{1}{n} \right\} \in \mathcal{F}$$

Hence, $B_n \uparrow B$. So, using the Markov inequality,

$$0 \le \mu(B_n) \le n \int_{B_n} \psi^+ d\mu \le n \int_B \psi^+ d\mu = n \int_B \psi d\mu = 0.$$

Then, $\mu(B) = \lim \mu(B_n) = 0$ which means that $\psi^+ = 0$ μ -a.e. The same idea for ψ^- implies that $\psi = 0$ μ -a.e.

b) Let $\Omega = [0, 1]$, $\mathcal{A} = \{\emptyset, \Omega\}$ and $\mathcal{F} = \mathcal{B}(\Omega)$. Take the Lebesgue measure m on Ω . Consider h(x) = 1/2 and f(x) = x. For any $A \in \mathcal{A}$, we have $\int_A h \, dm = \int_A f \, dm$. However, $f \neq h m$ -a.e.

- 10) a) 0 b) $\arctan \pi$
- c) 0
- d) 1/2
- e) 1
- List 3

1) a)

$$F(x) = \begin{cases} 0, & x < 2\\ \frac{1}{3}, & 2 \le x < 3\\ 1, & x \ge 3 \end{cases}$$

b)

$$F(x) = \begin{cases} 0, & x < 0\\ \frac{1}{3}x, & 0 \le x < 1\\ \frac{1}{3}, & 1 \le x < 2\\ \frac{2}{3}, & 2 \le x < 3\\ 1, & x \ge 3 \end{cases}$$

2) a) For each $x \in D$ we have $F(x^-) < r_x < F(x^+)$ for some choice of a rational number $r_x \in \mathbb{Q}$ (for example, take r_x to be the number with the smallest possible number of decimal places of $(F(x^-) + F(x^+)/2)$. We can define a function $g: D \to \mathbb{Q}$ given by $g(x) = r_x$. Thus, for $x_1 < x_2$ both in D we have $g(x_1) < F(x_1^+) \leq F(x_2^-) < g(x_2)$, meaning that g is strictly increasing. Therefore, g is a bijection between D and $g(D) \subset \mathbb{Q}$ and D is countable.

b)
$$\alpha(\{x\}) = F(x) - F(x^{-}) = 0$$

3)
4)
5) a) $\phi(t) = e^{ita}$
b) $(1 - p + pe^{it})^n$
c) $e^{\lambda(e^{it}-1)}$
d) $p/(1 - (1 - p)e^{it})$
e) $pn/(1 - (1 - p)e^{it})^n$
6) a)
 $\phi(t) = \frac{e^{itb} - e^{ita}}{(b - a)it}$
b) $1/(1 - it)$
c) $1/(1 + t^2)$
d) $e^{-|t|}$
e) $e^{it\mu - \sigma^2 t^2/2}$

List 4

1) a) Notice that $f(x) \in B$ is equivalent to $x \in f^{-1}(B)$. So, for any $B_1, B_2 \in \mathcal{B}$,

$$P(f(X) \in B_1, g(Y) \in B_2) = P(X \in f^{-1}(B_1), Y \in g^{-1}(B_2)).$$

Since X, Y are independent we get that

$$P(X \in f^{-1}(B_1), Y \in g^{-1}(B_2)) = P(X \in f^{-1}(B_1)) P(Y \in g^{-1}(B_2))$$

Thus, f(X), g(Y) are also independent.

b) Since by a) f(X), g(Y) are independent, then E(f(X)g(Y)) = E(f(X)) E(g(Y)).

2) The characteristic function is $\phi(t) = e^{-|t|}$. So, for $S_n/n = (X_1 + \cdots + X_n)/n$ we have the characteristic function

$$\phi_n(t) = (\phi(t/n))^n = e^{-|t|}$$

Therefore, for any n, S_n/n has the Cauchy distribution as well, and the limit distribution is not the normal distribution.

3) e^{-1}

4

5) b) $\frac{1}{2}\mathcal{X}_C + \frac{3}{2}\mathcal{X}_{C^c}$

c) 1

List 5

4) a) Stationary distribution: $\alpha = (\alpha_1, \alpha_2, ...)$ where

$$\alpha_1 = \frac{1-r}{2-r}, \qquad \alpha_i = \frac{1}{2^{i-1}(2-r)}, \quad i \ge 2$$

5) a) $S = R_+, \tau_1 = 4 = \tau_3, \tau_2 = 2$

b) $S = R_+, \tau_1 = \tau_2 = \tau_3 = \frac{1}{4}$

List 6

- 2) a) Yes.
- b) Yes.
- c) No. Just define a sub-martingale.

3) a) X_n is a martingale if p = 1/2, a super-martingale if 0 , and a sub-martingale if <math>1/2 .

b) X_n is a martingale if p = 1/2.

c) Yes.

d) Yes.

4. If $\lambda = 1$, X_n is a martingale. If $\lambda \ge 1$, X_n is a sub-martingale, and if $\lambda \le 1$, X_n is a super-martingale.

- 5. $E(X_{\tau \wedge n}) = E(X_1)$
- 6)

$$E(\tau) = \begin{cases} +\infty, & p \le \frac{1}{2} \\ \frac{1}{2p-1}, & p > \frac{1}{2}. \end{cases}$$