
Probability Theory and Stochastic Processes

Solutions

Jan 15, 2016

1. b) 0

2. 2

3. e−1

4.

E(X|Y )(ω) =

ω + 1
4
, ω < 1

2

ω − 1
4
, ω ≥ 1

2

5. a) Recurrent non-null, period 1

b) Unique stationary distribution ( 1
a
, . . . , 1

a
), mean recurrence time

a for all states.

6. Yes

Feb 1, 2016

1. a) 0

b) {∅,Ω, X−1({a}), X−1({b})}
c) We don’t know

2. 0

3. a) states 1, 2: transient period=2; states 3,4: recurrent positive

period=2

b) (0, 0, 1/2, 1/2), (+∞,+∞, 2, 2)

4. a) not a martingale

b) −∞
Jan 18, 2017

1. a)

F (x) =

1, x ≥
√

2

0, x <
√

2

φ(t) = eit
√
2. The distribution is the Dirac measure on R at

√
2.

b) Any that is equal to X a.e. Ex: Y (x) =
√

2.

2. Dirac distribution at 0.

3.

a) 1,2,3 transient; 4 positive recurrent

b) 1

c) π = (0, 0, 0, 1), µ = (+∞,+∞,+∞, 1)
1



2

4.

a) not a martingale

b) −∞
Feb 3, 2017

1. a)

F (x) =


1, x ≥ 2

x/2, 0 ≤ x < 2

0, x < 0

φ(t) = (e2it−1)/(2it), t 6= 0, φ(0) = 1. The distribution is the Lebesgue

measure on [0, 2].

b) Any that is equal to X a.e.

2. 1/2

3. a) 1 transient, 2,3,4,5 positive recurrent

b) Per(1)=1, Per(2)=Per(3)=Per(4)=Per(5)=2

c) (0,1/6,1/6,1/3,1/3), (+∞, 6, 6, 3, 3)

4. a) Yes

b) 1, 4/7, 4/7

Jan 17, 2018

1. a)

F (x) =


1, x ≥ 0

x+ 1, −1 ≤ x < 0

0, x < −1

φ(t) = (1−e−it)/(it), t 6= 0, φ(0) = 1. The distribution is the Lebesgue

measure on [−1, 0].

b) Any that is equal to X a.e.

2. b) 3/4

3. a) 1 positive recurrent, 2,3,4 transient. Per(1)=1=Per(4), there

are no periods for 2 and 3.

b) (1,0,0,0), (1,+∞,+∞,+∞)

c) 1

4. E(X1)

Feb 2, 2018

1. a) No. E.g. Ω 6∈ A.

b) σ(A) = {A ⊂ Ω: A is countable or Ac is countable}
3. a) 2,3 transient, 1,4 positive recurrent, Per(1)=Per(2)=Per(3)=Per(4)=1
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b) Stationary distributions: (a, 0, 0, 1 − a) for any 0 ≤ a ≤ 1; mean

recurrence times: (1,+∞,+∞, 1).

c) 1

4. E(X1)

Jan 21, 2019

1. a) True. Let An = {f − g ≥ 1/n} ∈ F verifying An ⊂ An+1 and

the inequality µ(An) ≤ n
∫
An

(f − g) dµ = 0. Then, µ({f − g > 0}) =

µ(∪nAn) = limµ(An) = 0. Same idea for µ({f − g < 0}) = 0, so that

f = g a.e.

b) False. E.g. µ probability measure, A = {∅,Ω} and F = σ({C})
with C 6∈ A and µ(C) = 1/2. For f = 2XC − 1 we have

∫
A
f dµ = 0,

A ∈ A, but f 6= 0 a.e.

2. a) 1/4

b)

P (Y ≤ y) =


0, x < 0

y2/2, 0 ≤ y < 1

1/2, 1 ≤ y <
√

2

1, x ≥
√

2

3. a) φSn(t) = (pe−it+(1−p)eit)n, φSn/n(t) = (pe−it/n+(1−p)eit/n)n.

By the weak law of large numbers, the limit dist is δ1−2p.

b) Martingale iff p = 1/2.

c)

E(τ) =

+∞, p ≤ 1
2

1
2p−1 , p > 1

2
.

d) p2(1− p)2.
4. T = [ 1 0

0 1 ]

Feb 6, 2019

2. a) 5/12, 11/4, 31/16

b)

P (Y ≤ y) =


0, x < 0

y2/6, 0 ≤ y <
√

3

1/2,
√

3 ≤ y < 2

1, x ≥ 2

c) 3
√

3/5 + 4, 27/8 + 32− (3
√

3/5 + 4)2



4

3. 8/3

4. a) No

b) 0, 10/(1− p)
Jan 9, 2020

1.

b) 0

2.

a) E(Yn) = n(µ − 1), E(2Yn) = en(µ−log 2), P (Y2 = 1|X1 = 0) =

µ3/3! e−µ

b) Yn is a martingale iff µ = 1. 2Yn is a martingale iff µ = log 2

c) Notice that P (τ = +∞) = P (∩n{τ > n}) = limn→+∞ P (τ > n).

Moreover,

P (τ > n) ≤ P (−1 < Yi < 2, 0 ≤ i ≤ n)

≤ P (X1 ∈ {0, 1, 2}, . . . , Xn ∈ {0, 1, 2})

=
n∏
i=1

P (Xi ∈ {0, 1, 2})

= [P (X1 = 0) + P (X1 = 1) + P (X1 = 2)]n =

(
5

2e

)n
→ 0.

So P (τ < +∞) = 1−P (τ = +∞) = 1. Since Yn is a martingale and

|Yτ∧n| ≤ 2 (dominated), by the optional stopping theorem E(Yτ ) =

E(Y1) = E(X1)− 1 = 0.

3.

a) Aperiodic iff a 6= 1 or b 6= 1. There is an absorving state iff a = 0

or b = 0.

b) There are stationary distributions for any a, b. There is a unique

stationary distribution iff a 6= 0 or b 6= 0.

4. All states are connected, i.e. between any two states there is a

path connecting them. Ignore all loops. All states are still connected.

There is a path between any two states. This path has N distinct

states and distinct arrows. There are at most N − 1 arrows.

Feb 4, 2020

1. f(x) = 0

2. limXn = X[0,1]\Q, limE(Xn) = E(limXn) = 1

4.

a) R = 2, 3, T = 1, 4, all aperiodic
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b) unique stationary distribution (0, 1/2, 1/2, 0), mean recurrence

times (+∞, 2, 2,+∞)

c) 0


