Mathematical Economics

FIRST EXAM

January 19, 2021

Solutions

PART I

(1) Consider the following correspondence $F:[0,2] \rightrightarrows[0,2]$,

$$
F(x)= \begin{cases}{\left[\sqrt{x}, 2-\frac{x}{2}\right],} & 0 \leq x \leq 1 \\ \{a\}, & 1<x \leq 2\end{cases}
$$

where $a \in[0,2]$.
(a) State the Kakutani fixed point theorem.

Solution: Let $F: K \rightrightarrows K$ be a correspondence defined on a compact and convex subset $K \subset \mathbb{R}^{n}$. If F is upper hemicontinuous and $F(x) \neq \emptyset$ and convex for every $x \in K$, then F has a fixed point x^{*} in K, i.e., $x^{*} \in F\left(x^{*}\right)$.
(b) Determine the values of a such that F satisfies the assumptions of the Kakutani fixed point theorem.

Solution: The domain of F is the interval $[0,2]$, hence compact and convex. $F(x)$ is either a closed interval or a point, thus $F(x)$ is convex and non-empty for every $x \in$ $[0,2]$. Finally, F is uhc for every $x \neq 1$. At $x=1, F$ is uhc iff it has the closed graph property, which is the case when $a \in\left[\sqrt{1}, 2-\frac{1}{2}\right]=\left[1, \frac{3}{2}\right]$.
(c) Find the fixed points of F for those values of a found in (b). In case you did not solve (b), you may take $a=2$.

Solution: The fixed points satisfy the inclusion $x \in F(x)$. By drawing the graph of F one concludes that F has fixed points $\{0,1, a\}$.
(2) Consider the function $f:[0,1]^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y)=\left(\frac{(x+y)^{2}}{4}, x\right) .
$$

(a) Verify that f satisfies the hypothesis of the Brouwer fixed point theorem.

Solution: The Brouwer fixed point theorem states that if K is compact and convex and $f: K \rightarrow K$ is continuous, then f has a fixed point in K. Here $K=[0,1]^{2}$ is a square, hence compact and convex. Morever, f being polynomial in each component it is continuous. It remains to show that $f(x, y) \in[0,1]^{2}$ for every $(x, y) \in[0,1]^{2}$. That follows since $0 \leq \frac{(x+y)^{2}}{4} \leq \frac{(1+1)^{2}}{4}=1$ and $0 \leq x \leq 1$ for every $(x, y) \in[0,1]^{2}$.
(b) Find the fixed points of f.

Solution: The fixed points satisfy $f(x, y)=(x, y)$. Thus

$$
\left\{\begin{array} { l }
{ \frac { (x + y) ^ { 2 } } { 4 } = x } \\
{ x = y }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ x ^ { 2 } = x } \\
{ x = y }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=0 \vee x=1 \\
x=y
\end{array}\right.\right.\right.
$$

So, f has fixed points $(0,0)$ and $(1,1)$.

PART II

(1) Find and classify the critical points of

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}+x y+x-2 z
$$

Solution: The derivative of f is

$$
D f(x, y, z)=\left[\begin{array}{lll}
2 x+y+1 & 2 y+x & 2 z-2
\end{array}\right]
$$

The critical points satisfy $D f(x, y, z)=(0,0,0)$, that is

$$
\left\{\begin{array} { l }
{ 2 x + y + 1 = 0 } \\
{ 2 y + x = 0 } \\
{ 2 z - 2 = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=-\frac{2}{3} \\
y=\frac{1}{3} \\
z=1
\end{array}\right.\right.
$$

The hessian of f is

$$
D^{2} f(x, y, z)=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

which is positive definite since the leading principal minors are $\Delta_{1}=2, \Delta_{2}=3, \Delta_{3}=6$. Whence, f is strictly convex and $(-2 / 3,1 / 3,1)$ is a minimizer.
(2) Solve the following problem:

$$
\begin{aligned}
& \operatorname{maximize} x+y \\
& \text { subject to } 5 x^{2}-6 x y+5 y^{2} \leq 4 \\
& \quad x \geq 0
\end{aligned}
$$

Explain carefully all the steps in your reasoning.

Solution: The problem has the Lagrangian

$$
L(x, y, \lambda, \mu)=x+y+\lambda\left(4-5 x^{2}+6 x y-5 y^{2}\right)+\mu x
$$

The associated Kuhn-Tucker conditions are

$$
\left\{\begin{array}{l}
1+\lambda(6 y-10 x)+\mu=0 \\
1+\lambda(6 x-10 y)=0 \\
\lambda\left(4-5 x^{2}+6 x y-5 y^{2}\right)=0 \\
\mu x=0 \\
5 x^{2}-6 x y+5 y^{2} \leq 4 \\
x \geq 0
\end{array}\right.
$$

The system has solutions

$$
\left(1,1, \frac{1}{4}, 0\right) \quad \text { and } \quad\left(0, \pm \frac{2}{\sqrt{5}}, \pm \frac{\sqrt{5}}{20},-\frac{8}{5}\right) .
$$

Since it is a maximization problem, only the first solution matters because all multipliers are non-negative. Moreover,

$$
D^{2} L\left(x, y, \frac{1}{4}, 0\right)=\left[\begin{array}{cc}
-5 / 2 & 3 / 2 \\
3 / 2 & -5 / 2
\end{array}\right]<0
$$

since $\Delta_{1}=-5 / 2$ and $\Delta_{2}=8$. Hence, $L\left(x, y, \frac{1}{4}, 0\right)$ is a concave function and $(1,1)$ is the solution of the maximization problem.

PART III

(1) Consider the differential equation

$$
x^{\prime}(t)+2 t^{2} x(t)=t^{2}
$$

(a) Classify the differential equation and determine its general solution.

Solution: The ODE is 1st order, non-autonomous, linear and non-homogeneous. By the integrating factor method, the ODE has general solution

$$
x(t)=\frac{1}{2}+C e^{-\frac{2}{3} t^{3}}, \quad C \in \mathbb{R}
$$

(b) Let $x(t)$ denote the particular solution when $x(0)=1$. Find $\lim _{t \rightarrow+\infty} x(t)$.

Solution:

$$
\lim _{t \rightarrow+\infty} x(t)=\frac{1}{2} .
$$

(2) Consider the system of ODEs

$$
\left\{\begin{array}{l}
x^{\prime}=-2 y \\
y^{\prime}=y-x
\end{array}\right.
$$

(a) Write the system in matrix form $X^{\prime}=A X$.

Solution:

$$
A=\left[\begin{array}{cc}
0 & -2 \\
-1 & 1
\end{array}\right]
$$

(b) Solve the IVP assuming that $x(0)=1$ and $y(0)=-1$.

Solution: The eigenvalues of A are $\lambda=2$ or $\lambda=-1$ with eigenvectors $(-1,1)$ and $(2,1)$, respectively. . Hence, A has Jordan normal form of type I

$$
J=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]
$$

and the matrix of change of variables

$$
P=\left[\begin{array}{cc}
-1 & 2 \\
1 & 1
\end{array}\right]
$$

The exponential matrix of A is

$$
\begin{aligned}
e^{A t} & =P e^{J t} P^{-1} \\
& =\left[\begin{array}{cc}
-1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{-t}
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & \frac{1}{3}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
2 e^{-t}+e^{2 t} & 2 e^{-t}-2 e^{2 t} \\
e^{-t}-e^{2 t} & e^{-t}+2 e^{2 t}
\end{array}\right]
\end{aligned}
$$

Finally, the solution to the IVP

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=e^{A t}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
2 e^{-t}+e^{2 t} & 2 e^{-t}-2 e^{2 t} \\
e^{-t}-e^{2 t} & e^{-t}+2 e^{2 t}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
e^{2 t} \\
-e^{2 t}
\end{array}\right]
$$

(c) Sketch the phase portrait of the system.

Solution: A saddle with a stable axis along the eigenvector $(2,1)$ and an unstable axis along the eigenvector $(-1,1)$.

Economia Matemática: ME MEMF MMF 2020-2021

Part:IV

Paulo Brito
18.12.2020

Solutions

Question 1: The problem

$$
\begin{aligned}
V\left(x_{0}\right) \equiv \max _{\left\{u_{t}\right\}_{t=0}^{T-1}} & \sum_{t=0}^{T-1} \ln \left(u_{t}\right) \\
& \text { subject to } \\
& x_{t+1}=(1+\mu) x_{t}-u_{t}, \text { for } t \in\{0,1, \ldots, T-1\} \\
& x_{0}=1 \\
& x_{T}=(1+\mu)^{T}
\end{aligned}
$$

(a) Hamiltonian function $H(u, x, \psi)=\ln (u)+\psi((1+\mu) x-u)$. Then $H_{t}=$ $H\left(u_{t}, x_{t}, \psi_{t}\right)$. The first order conditions are

$$
\begin{aligned}
\frac{\partial H_{t}}{\partial u_{t}} & =0 \Longleftrightarrow \frac{1}{u_{t}}=\psi_{t}, \text { for } t \in\{0,1, \ldots, T-1\} \\
\psi_{t} & =\frac{\partial H_{t+1}}{\partial x_{t+1}}=(1+\mu) \psi_{t+1}, \text { for } t \in\{0,1, \ldots, T-1\} \\
x_{t+1} & =(1+\mu) x_{t}-u_{t}, \text { for } t \in\{0,1, \ldots, T-1\} \\
x_{0} & =1, \text { for } t=0 \\
x_{T} & =(1+\mu)^{T}, \text { for } t=T
\end{aligned}
$$

(b) The first two equations yield $u_{t+1}=(1+\mu) u_{t}$ which has the general solution $u_{t}=u_{0}(1+\mu)^{t}$ with u_{0} unknown. Substituting in the constraint we have $x_{t+1}=(1+\mu) x_{t}-u_{0}(1+\mu)^{t}$. Solving with $x_{0}=1$ yields $x_{t}=(1+\mu)^{t}-t u_{0}(1+\mu)^{t-1}$. The terminal condition is satisfied if

$$
\left.x_{t}\right|_{t=T}=(1+\mu)^{T}-T u_{0}(1+\mu)^{T-1}=(1+\mu)^{T} \Longleftrightarrow u_{0}=0 .
$$

The solution to the problem is,

$$
\begin{aligned}
& u_{t}^{*}=0, \text { for } t \in\{0, \ldots, T-1\} \\
& x_{t}^{*}=(1+\mu)^{t}, \text { for } t \in\{0, \ldots, T\}
\end{aligned}
$$

Off course $V\left(x_{0}\right)=-\infty$

Question 2: The problem

$$
\begin{aligned}
& V\left(k_{0}\right) \equiv \max _{c(\cdot)} \int_{t=0}^{\infty} \ln (c(t)) e^{-(\rho-n) t} \\
& \text { subject to } \\
& \dot{k}=(A-n) k-c, \text { for } t \in \mathbb{R}_{+} \\
& k(0)=k_{0} \\
& \lim _{t \rightarrow \infty} e^{-\rho t} k(t) \geq 0
\end{aligned}
$$

(a) Hamiltonian function $H(c, k, q)=\ln (c)+q((A-n) k-c)$. Then $H(t)=$ $H(c(t), a(t), q(t))$. The first order conditions are

$$
\begin{aligned}
\frac{\partial H(t)}{\partial c(t)} & =0 \Longleftrightarrow \frac{1}{c(t)}=q(t), \text { for } t \in \mathbb{R}_{+} \\
\dot{q} & =(\rho-n) q-\frac{\partial H(t)}{\partial k(t)}=q(\rho-A), \text { for } t \in \mathbb{R}_{+} \\
\dot{k} & =(A-n) k-c, \text { for } t \in \mathbb{R}_{+} \\
k(0) & =k_{0}, \text { for } t=0 \\
\lim _{t \rightarrow \infty} q(t) k(t) e^{-(\rho-n) t} & =0
\end{aligned}
$$

(b) Define $z(t) \equiv \frac{c(t)}{k(t)}$. The f.o.c separate into a terminal value

$$
\left\{\begin{array}{l}
\dot{z}=1-(\rho-n) z, \text { for } t \in \mathbb{R}_{+} \\
\lim _{t \rightarrow \infty} z(t) e^{-(\rho-n) t}=0
\end{array}\right.
$$

and an initial value problem

$$
\left\{\begin{array}{l}
\dot{k}=\left(A-n-z(t)^{-1}\right) k, \text { for } t \in \mathbb{R}_{+} \\
k(0)=k_{0}
\end{array}\right.
$$

The first has the solution, because $\rho>n>0 z(t)=\frac{1}{\rho-n}$, for any $t \in \mathbb{R}_{+}$, then $c(t)=(\rho-n) k(t)$. Substituting in the second problem yields

$$
\left\{\begin{array}{l}
\dot{k}=(A-\rho) k, \text { fort } \in \mathbb{R}_{+} \\
k(0)=k_{0}
\end{array}\right.
$$

Therefore, the solution to the problem is

$$
\begin{aligned}
k^{*}(t) & =k_{0} e^{(A-\rho) t} \\
c^{*}(t) & =(\rho-n) k_{0} e^{(A-\rho) t}
\end{aligned}
$$

