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Solutions

PART I

(1) Consider the following correspondence F : [0, 2] ⇒ [0, 2],

F (x) =

[
√
x, 2− x

2
], 0 ≤ x ≤ 1

{a}, 1 < x ≤ 2

where a ∈ [0, 2].

(a) State the Kakutani fixed point theorem.

Solution: Let F : K ⇒ K be a correspondence defined

on a compact and convex subset K ⊂ Rn. If F is upper

hemicontinuous and F (x) 6= ∅ and convex for every x ∈ K,

then F has a fixed point x∗ in K, i.e., x∗ ∈ F (x∗).

(b) Determine the values of a such that F satisfies the assump-

tions of the Kakutani fixed point theorem.

Solution: The domain of F is the interval [0, 2], hence

compact and convex. F (x) is either a closed interval or a

point, thus F (x) is convex and non-empty for every x ∈
[0, 2]. Finally, F is uhc for every x 6= 1. At x = 1, F is

uhc iff it has the closed graph property, which is the case

when a ∈ [
√

1, 2− 1
2
] = [1, 3

2
].

(c) Find the fixed points of F for those values of a found in

(b). In case you did not solve (b), you may take a = 2.

Solution: The fixed points satisfy the inclusion x ∈ F (x).

By drawing the graph of F one concludes that F has fixed

points {0, 1, a}.
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(2) Consider the function f : [0, 1]2 → R2 defined by

f(x, y) =

(
(x+ y)2

4
, x

)
.

(a) Verify that f satisfies the hypothesis of the Brouwer fixed

point theorem.

Solution: The Brouwer fixed point theorem states that if

K is compact and convex and f : K → K is continuous,

then f has a fixed point in K. Here K = [0, 1]2 is a square,

hence compact and convex. Morever, f being polynomial

in each component it is continuous. It remains to show

that f(x, y) ∈ [0, 1]2 for every (x, y) ∈ [0, 1]2. That follows

since 0 ≤ (x+y)2

4
≤ (1+1)2

4
= 1 and 0 ≤ x ≤ 1 for every

(x, y) ∈ [0, 1]2.

(b) Find the fixed points of f .

Solution: The fixed points satisfy f(x, y) = (x, y). Thus
(x+y)2

4
= x

x = y
⇔

x2 = x

x = y
⇔

x = 0 ∨ x = 1

x = y

So, f has fixed points (0, 0) and (1, 1).
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PART II

(1) Find and classify the critical points of

f(x, y, z) = x2 + y2 + z2 + xy + x− 2z

Solution: The derivative of f is

Df(x, y, z) =
[
2x+ y + 1 2y + x 2z − 2

]
The critical points satisfy Df(x, y, z) = (0, 0, 0), that is

2x+ y + 1 = 0

2y + x = 0

2z − 2 = 0

⇔


x = −2

3

y = 1
3

z = 1

The hessian of f is

D2f(x, y, z) =

2 1 0

1 2 0

0 0 2


which is positive definite since the leading principal minors are

∆1 = 2, ∆2 = 3, ∆3 = 6. Whence, f is strictly convex and

(−2/3, 1/3, 1) is a minimizer.

(2) Solve the following problem:

maximize x+ y

subject to 5x2 − 6xy + 5y2 ≤ 4

x ≥ 0

Explain carefully all the steps in your reasoning.

Solution: The problem has the Lagrangian

L(x, y, λ, µ) = x+ y + λ(4− 5x2 + 6xy − 5y2) + µx
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The associated Kuhn-Tucker conditions are

1 + λ(6y − 10x) + µ = 0

1 + λ(6x− 10y) = 0

λ(4− 5x2 + 6xy − 5y2) = 0

µx = 0

5x2 − 6xy + 5y2 ≤ 4

x ≥ 0

The system has solutions

(1, 1,
1

4
, 0) and (0,± 2√

5
,±
√

5

20
,−8

5
).

Since it is a maximization problem, only the first solution mat-

ters because all multipliers are non-negative. Moreover,

D2L(x, y,
1

4
, 0) =

[
−5/2 3/2

3/2 −5/2

]
< 0

since ∆1 = −5/2 and ∆2 = 8. Hence, L(x, y, 1
4
, 0) is a concave

function and (1, 1) is the solution of the maximization problem.
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PART III

(1) Consider the differential equation

x′(t) + 2t2x(t) = t2

(a) Classify the differential equation and determine its general

solution.

Solution: The ODE is 1st order, non-autonomous, linear

and non-homogeneous. By the integrating factor method,

the ODE has general solution

x(t) =
1

2
+ Ce−

2
3
t3 , C ∈ R

(b) Let x(t) denote the particular solution when x(0) = 1.

Find limt→+∞ x(t).

Solution:

lim
t→+∞

x(t) =
1

2
.

(2) Consider the system of ODEsx′ = −2y

y′ = y − x

(a) Write the system in matrix form X ′ = AX.

Solution:

A =

[
0 −2

−1 1

]
(b) Solve the IVP assuming that x(0) = 1 and y(0) = −1.

Solution: The eigenvalues of A are λ = 2 or λ = −1 with

eigenvectors (−1, 1) and (2, 1), respectively. . Hence, A

has Jordan normal form of type I

J =

[
2 0

0 −1

]
and the matrix of change of variables

P =

[
−1 2

1 1

]
.
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The exponential matrix of A is

eAt = PeJtP−1

=

[
−1 2

1 1

][
e2t 0

0 e−t

][
−1

3
2
3

1
3

1
3

]

=
1

3

[
2e−t + e2t 2e−t − 2e2t

e−t − e2t e−t + 2e2t

]
Finally, the solution to the IVP[

x(t)

y(t)

]
= eAt

[
x(0)

y(0)

]
=

1

3

[
2e−t + e2t 2e−t − 2e2t

e−t − e2t e−t + 2e2t

][
1

−1

]
=

[
e2t

−e2t

]
(c) Sketch the phase portrait of the system.

Solution: A saddle with a stable axis along the eigen-

vector (2, 1) and an unstable axis along the eigenvector

(−1, 1).
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Solutions
Question 1: The problem

V (x0) ≡ max
{ut}T−1

t=0

T−1∑
t=0

ln (ut)

subject to
xt+1 = (1 + µ)xt − ut, for t ∈ {0, 1, . . . , T − 1}
x0 = 1

xT = (1 + µ)T

(a) Hamiltonian function H(u, x, ψ) = ln (u) + ψ ((1 + µ)x− u). Then Ht =
H(ut, xt, ψt). The first order conditions are

∂Ht

∂ut
= 0 ⇐⇒ 1

ut
= ψt, for t ∈ {0, 1, . . . , T − 1}

ψt =
∂Ht+1

∂xt+1
= (1 + µ)ψt+1, for t ∈ {0, 1, . . . , T − 1}

xt+1 = (1 + µ)xt − ut, for t ∈ {0, 1, . . . , T − 1}
x0 = 1, for t = 0

xT = (1 + µ)T , for t = T

(b) The first two equations yield ut+1 = (1 + µ)ut which has the general
solution ut = u0 (1+µ)t with u0 unknown. Substituting in the constraint
we have xt+1 = (1 + µ)xt − u0 (1 + µ)t. Solving with x0 = 1 yields
xt = (1 + µ)t − t u0 (1 + µ)t−1. The terminal condition is satisfied if

xt

∣∣∣
t=T

= (1 + µ)T − T u0 (1 + µ)T−1 = (1 + µ)T ⇐⇒ u0 = 0.

The solution to the problem is,

u∗t = 0, for t ∈ {0, . . . , T − 1}
x∗t = (1 + µ)t, for t ∈ {0, . . . , T}

Off course V (x0) = −∞
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Question 2: The problem

V (k0) ≡ max
c(·)

∫ ∞
t=0

ln (c(t)) e−(ρ−n) t

subject to

k̇ = (A− n) k − c, for t ∈ R+

k(0) = k0

lim
t→∞

e−ρ t k(t) ≥ 0

(a) Hamiltonian function H(c, k, q) = ln (c) + q ((A−n) k− c). Then H(t) =
H(c(t), a(t), q(t)). The first order conditions are

∂H(t)

∂c(t)
= 0 ⇐⇒ 1

c(t)
= q(t), for t ∈ R+

q̇ = (ρ− n) q − ∂H(t)

∂k(t)
= q (ρ−A), for t ∈ R+

k̇ = (A− n) k − c, for t ∈ R+

k(0) = k0, for t = 0

lim
t→∞

q(t) k(t) e−(ρ−n)t = 0

(b) Define z(t) ≡ c(t)

k(t)
. The f.o.c separate into a terminal value{

ż = 1− (ρ− n) z, fort ∈ R+

limt→∞ z(t) e−(ρ−n)t = 0

and an initial value problem{
k̇ =

(
A− n− z(t)−1) k, fort ∈ R+

k(0) = k0.

The first has the solution, because ρ > n > 0 z(t) =
1

ρ− n
, for any

t ∈ R+, then c(t) = (ρ − n) k(t). Substituting in the second problem
yields {

k̇ =
(
A− ρ) k, fort ∈ R+

k(0) = k0.

Therefore, the solution to the problem is

k∗(t) = k0 e
(A−ρ) t

c∗(t) = (ρ− n) k0 e(A−ρ) t.
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