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Solutions

PART 1

(1) Consider the following correspondence F': [0, 2] = [0, 2],

Vz,2—-3], 0<2<1

Fla)= {a}, l<z<2

where a € [0, 2].

(a)

State the Kakutani fixed point theorem.

Solution: Let F': K = K be a correspondence defined
on a compact and convex subset K C R"™. If F is upper
hemicontinuous and F(z) # () and convex for every = € K,
then F has a fixed point z* in K, i.e., 2* € F(z").

Determine the values of a such that F satisfies the assump-
tions of the Kakutani fixed point theorem.

Solution: The domain of F' is the interval [0,2], hence
compact and convex. F'(x) is either a closed interval or a
point, thus F(x) is convex and non-empty for every = €
[0,2]. Finally, F is uhc for every x # 1. At x = 1, F is
uhc iff it has the closed graph property, which is the case
when a € [V1,2 — 3] = [L, ).

Find the fixed points of F for those values of a found in
(b). In case you did not solve (b), you may take a = 2.

Solution: The fixed points satisfy the inclusion x € F(z).
By drawing the graph of F' one concludes that F' has fixed
points {0, 1, a}.



(2) Consider the function f : [0,1]? — R? defined by
T+ y)?

(a) Verify that f satisfies the hypothesis of the Brouwer fixed
point theorem.

Solution: The Brouwer fixed point theorem states that if
K is compact and convex and f: K — K is continuous,
then f has a fixed point in K. Here K = [0, 1]* is a square,
hence compact and convex. Morever, f being polynomial
in each component it is continuous. It remains to show
that f(z,y) € [0, 1]? for every (z,y) € [0,1]?. That follows
since 0 < (xzy)Q < (121)2 =1land 0 < 2 < 1 for every
(z,y) € [0, 1]

(b) Find the fixed points of f.

Solution: The fixed points satisfy f(x,y) = (x,y). Thus

%:x 1}2:,]} r=0Vax=1
= =
T=y r=y r=1Y

So, f has fixed points (0,0) and (1,1).



PART II

(1) Find and classify the critical points of

flay,2) =2+’ + 2 4oy + o — 22

Solution: The derivative of f is
Df(z,y,2) = [2x—|—y+1 W+ 27— 2

The critical points satisfy D f(z,y,2) = (0,0,0), that is

2e+y+1=0 r=-2
2y+1x=0 Sy=3

The hessian of f is

S =N
(el NI
N O O

which is positive definite since the leading principal minors are
A; =2, Ay = 3, A3 = 6. Whence, f is strictly convex and
(—2/3,1/3,1) is a minimizer.

(2) Solve the following problem:

maximize r + vy
subject to 5z — 6zy + 5y* < 4
x>0

Explain carefully all the steps in your reasoning.
Solution: The problem has the Lagrangian

L(z,y, \ ) = 2+ y + N4 — 52 + 62y — 59°) + pux



The associated Kuhn-Tucker conditions are
(14 A(6y — 102) + 1= 0

1+ A6x —10y) =0

A4 — 52 + 6zy — 5y?) =0

pr =0

5x? — 6xy + 5y? < 4
x>0

\

The system has solutions

1 2 V5 8
1,1,-.,0 d 0,+—,+—,—=).
(L1700 and (04— 30—

Since it is a maximization problem, only the first solution mat-

ters because all multipliers are non-negative. Moreover,

, 1 =52 32
DL(a:,y,Z,O)—[?)/2 _5/2] <0

since Ay = —5/2 and A, = 8. Hence, L(z,y, }1,0) is a concave

function and (1, 1) is the solution of the maximization problem.



PART III
(1) Consider the differential equation
o' (t) + 2t%2(t) = #*

(a) Classify the differential equation and determine its general
solution.

Solution: The ODE is 1st order, non-autonomous, linear
and non-homogeneous. By the integrating factor method,

the ODE has general solution

1 2
o) = 5 + Ce 5", CeR

(b) Let x(t) denote the particular solution when z(0) = 1.
Find limy_, oo 2(t).

Solution:

1
lim z(t) = 7"

t——+o0

(2) Consider the system of ODEs
= =2y
y=y—=x

(a) Write the system in matrix form X' = AX.

0 -2
-1 1

(b) Solve the IVP assuming that z(0) = 1 and y(0) = —1.

Solution:

A:

Solution: The eigenvalues of A are A = 2 or A = —1 with
eigenvectors (—1,1) and (2, 1), respectively. . Hence, A
has Jordan normal form of type I

2
J = 0
0 —1
and the matrix of change of variables

-1 2
1 1|

P =




The exponential matrix of A is

eAt — PeJtPfl

—1 2] [e®* 0
1 11|10 et

et 4 e 2e7t — 22t

et —e?t et 4 2e?

W= wlN
1

1

-3
Finally, the solution to the IVP

w] _ a[e] _1
() y(0)| 3

(c) Sketch the phase portrait of the system.

et + 2 2e7t — 22t

et — o2t gt 4 9p2

S

Solution: A saddle with a stable axis along the eigen-

vector (2,1) and an unstable axis along the eigenvector
(_L 1)
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Solutions
Question 1: The problem

V(zg) = max Z In (ut)
t=0

fued{ '
subject to
Tep1 = (1+p)xe —uy, fort €{0,1,..., T -1}
9 =1
ar = (1+p)"

(a) Hamiltonian function H(u,z,v) =1In(u) +¢ ((14 )z —u). Then H; =
H(ug, x¢,14). The first order conditions are

OH,; 1

O o o L frtefo1... T—1

Oouy Ut Ve, for 6{7 ’ 7 }
OH,

wt: t+1=(1+ﬂ)¢t+17 for te{o’:l”T_l}
O0x441

Tpp1 = (1 +p) @y —uy, for t€{0,1,...,T -1}
x():l, for t=0
zr =14+ p)T, for t=T

(b) The first two equations yield u;y; = (1 + p)us which has the general
solution u; = ug (1 + u)t with ug unknown. Substituting in the constraint
we have @141 = (1 4+ p)xy — up (1 + w)'. Solving with zg = 1 yields
xp = (14 u)t —tug (1 + )t~ The terminal condition is satisfied if

| = A+ —Tug(1+ )"t =1+p)" = u =0.

The solution to the problem is,

u; =0, for t€{0,...,7—1}
;= (1+p)t, for t€{0,...,T}

Off course V(xp) = —c0



Question 2: The problem

V(kp) = max /oo In (c(t)) e~ (p—n)t

() Je=0
subject to
kE =(A-n)k—c, fort e Ry
k(0) = ko
tlggo e Pt k(t) >0

(a) Hamiltonian function H(c,k,q) =In(c) +q((A—n)k—c). Then H(t) =
H(c(t),a(t),q(t)). The first order conditions are

OH (t) 1

Be(t) =0 < @:q(t), for t e Ry
q=<p—n>q—%§((f)>:q(p—A>, for teR,

k =(A-n)k—c¢ fort e Ry
k(O) = k(), for t=0
; —(p—m)t _
tlggo qit) k(t) e =0
c(t

()

~—

(b) Define z(t) = . The f.o.c separate into a terminal value

o~

2 =1—(p—n)z fort e Ry
limy o0 2(t) e~ (P~ =0

and an initial value problem

ko= (A—n—2z(t)" ")k, fort € Ry
k(0) = ko.

1
The first has the solution, because p > n > 0 z(t) = ——, for any
p—n

t € Ry, then ¢(t) = (p — n)k(t). Substituting in the second problem
yields

k= (A—p)k, fort € Ry
k(0) = ko.

Therefore, the solution to the problem is
k() = ko A=)t

() = (p—n) kgeA=PL,



