DATA ANALYSIS IN ACCOUNTING

Master in Accounting

Academic year 2020/ 2021

1. Introduction to data analysis (Chapters 1-2, 7-10 e 15, Newbold, 2013)
1.1. Definitions / notation
1.2. Some types of data
1.3. Data description
1.4. Parametric and nonparametric inference

1.1. Definitions / Notation

- Population: object of analysis of the empirical work - includes the individuals (firms, workers, countries, ..) for which we wish to analyse some characteristics
- Sample: subset of the population from which we estimate the quantities of interest
- A random sample is assumed to be available
- In a census, the sample coincides with the population
- Sampling unit/observation/ individual $\rightarrow i$
- Sample size $\rightarrow n$
- Variable: $x_{i}, i=1, \ldots n$

1.2. Some types of data

- Cross sectional: n individuals are observed at a given moment

TABLE 1.1 A Gross-Sectional Data Set on Wages and Other Individual Characteristics

obsno	wage	educ	exper	female	married
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	3.00	11	2	0	0
4	6.00	8	44	0	1
5	5.30	12	7	0	1
.			.	-	

- Time series: 1 individual is observed over T periods

TABLE 1.3 Minimum Wage, Unemployment, and Related Data for Puerto Rico					
obsno	year	avgmin	avgcov	prunemp	prgnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
.	
.	

- Panel: n individuals are observed over T periods

obsno	city	year	murders	population	unem	police
1	1	1986	5	350,000	8.7	440
2	1	1990	8	359,200	7.2	471
3	2	1986	2	64,300	5.4	75
4	2	1990	1	65,100	5.5	75

- Pooled data: a cross sectional sample is available for several periods but the individuals at different periods are not necessarily the same

| TABLE 1.4 |
| :---: | | Pooled Gross Sections: Two Years of Housing Prices |
| :---: |
| obsno |
| 1 |

1.3. Data description

In an univariate approach, we may consider:

- Frequency tables, histograms, box-plots, etc.
- Descriptive statistics: central tendency measures (mean, median, mode), dispersion (standard error, variance, interquartile measures, ...), noncentral tendency (quantiles, percentiles, ...)

Descriptive statistics: location and dispersion

Location (central tendency)

- Mean (arithmetic, geometric, ...)
- Median
- Mode

Mean

- Arithmetic: the typical location measure: $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
- Geometric (only for positive variables): $\bar{x}_{G}=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}=\frac{\sum_{i=1}^{n} \ln \left(x_{i}\right)}{n}$

Median

A value defined such that 50% of the observations are smaller and 50% are larger.

- The observations of the variable are ordered. Then, if n in odd the median is the central observation of the collection. If n is even, the median is the arithmetic mean of the two central observations of the ordered data.

Mode

The mode is the most frequent value of the variable

Dispersion

Variance

- Measures the square of the variation to the mean;

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

- The variance reflects the (squared) measurement unit of the variable in analysis. The magnitude is not informative.

Standard error

$$
s=\sqrt{s^{2}}
$$

- The measurement unit is directly captured, but the magnitude is again dependent on that reference: for example, if one measures in euros, instead of hundred euros, s is 100 times larger.

Non central tendency measures: quartile, percentiles, quantiles,...
Quartiles and inter-quartile interval

- $\mathbf{1}^{\circ}$ Quartile (Q1) - value for which 25% of the observations are inferior and 75% superior
- $\mathbf{2}^{\circ}$ Quartile (Q2) - median
- 3° Quartile (Q3) - value for which 75% of the observations are inferior and 25% superior

Summarizing five numbers: boxplots

The 5 numbers: $x_{\text {min }}<Q_{1}<$ Median $<Q_{3}<x_{\text {max }}$

Boxplot (ou Box-and-whisker plot)

FIGURE 4.27

Sample Boxplots from Four Populations ($n=1000$)

"Outliers"

Observations for which the value of the variable is distant form the others

Usual definition of outlier

Exemplo 2.8 (Newbold) adaptado - Gilotti's Pizzeria

Gilotti's Pizzeria has 4 locations in one large metropolitan area. Daily sales (in hundreds of dollars) from a random sample of 10 weekdays from each of the 4 locations are given in Table 2.2. The box- plot is

Shape of the distribution (Doane and Seward)

FIGURE 3.7
 Prototype Distribution Shapes

Skewed Left

Bimodal Skewed Left

Skewed Right

Multimodal Symmetric

Bimodal Skewed Right
 Skewed Right with Outliers

Correlation

Evaluates the degree association between two variables;

- Quantitative variables: scatterplots, correlation coefficient
- Qualitative variables (assuming a few diferente values): contingency table

Illustration for two quantitative variables. Contingency tables will be produced in Stata.

Correlation coefficient (Pearson): informs on the linear association between two variables

$$
r_{y x}=\frac{s_{y x}}{s_{y} s_{x}},-1 \leq r_{y x} \leq 1
$$

- s_{x} standard deviation of x, s_{y} standard deviation of y
- $s_{x y}$ covariance between x and $y, s_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}$
- $r_{y x}=1\left(r_{y x}=-1\right)$: perfect positive (negative) linear correlation
- $0<r_{y x}<1\left(-1<r_{y x}<0\right)$: linear positive (negative) correlation
- $r_{y x}=0$: absence of linear correlation (either no correlation or nonlinear correlation)
- Illustration (Doane \& Seward)

- For a sample of size n , it is considered that the correlation is significant for $\left|r_{y x}\right|>2 / \sqrt{n}$.

1.4 Parametric and nonparametric estimation and inference

The parametric approach considered here relies on the assumption of the normal distribution. This assumption is relaxed by the nonparametic approach

Parametric approach:

- Estimation
- Point: an estimate is obtained for the (unknown) parameter of interest
- Interval: an interval is obtained, that contains the true value of the parameter of interest at a given confidence level (chosen by the researcher):

Point estimate \pm margin of error

- Hypothesis testing

Basic principle of statistical inference: as an inductive inference procedure (particular to general) all the conclusions are subject to uncertainty

Interval estimation

Statistics II - review

Example: for $X \sim n(\mu ; \sigma)$ the confidence interval (CI) for the mean (μ), unknown variance, with level $(1-\alpha)$ is

$$
\left(\bar{x}-t \alpha_{/ 2, n-1} \frac{s}{\sqrt{n}} ; \bar{x}+t \alpha / 2, n-1 \frac{s}{\sqrt{n}}\right)
$$

- CI at the 95\% level for μ, using the data (6.3; 7.4; 9.2; 12.3; $5.2 ; 3.1 ; 15.1 ; 6.2 ; 3.5 ; 6.7$) or which $\bar{x}=7.5$ and $s=3.77$

$$
\left(7.5-2.262 \frac{3.77}{\sqrt{10}} ; 7.5+2.262 \frac{3.77}{\sqrt{10}}\right), \text { that is }(4.803 ; 10.197)
$$

Example: large samples, without the normality assumption - CI for the mean, (μ), unknown variance at the $(1-\alpha)$ level;

$$
\left(\bar{x}-z \alpha / 2 \frac{s}{\sqrt{n}} ; \bar{x}+z \alpha / 2 \frac{s}{\sqrt{n}}\right)
$$

- Consider a sample of size n of variable X with $\bar{x}=123.4$ and $s=25.4$. The Cl at the 90% level for μ is

$$
\left(123.4-1.645 \frac{25.4}{\sqrt{1000}} ; 123.4+1.645 \frac{25.4}{\sqrt{1000}}\right) \text {, that is }(122.07 ; 124.73) \text {, }
$$

using $\hat{\sigma}=s$, because σ is unknown

Example: consider a Bernoulli variable $X(X \in\{0,1\}$, hence the mean equals the proportion of successes $\mu=\pi$) - CI for a proportion at level $1-\alpha$:

$$
\left(\bar{x}-z \alpha / 2 \sqrt{\frac{\bar{x}(1-\bar{x})}{n}} ; \bar{x}+z \alpha / 2 \sqrt{\frac{\bar{x}(1-\bar{x})}{n}}\right)
$$

- With the aim of anticipating the voting result for a given decision, where votes are expressed as "yes" or "no", a sample of size 900 was collected, with 600 votes for "yes". The Cl at 95% for π, the proportion of votes for "yes" is

$$
\left(\frac{2}{3}-1.96 \sqrt{\frac{(2 / 3) \times(1 / 3)}{900}} ; \frac{2}{3}+1.96 \sqrt{\frac{(2 / 3) \times(1 / 3)}{900}}\right) \text {, that is }(0.636 ; 0.697)
$$

Note: we use $\bar{x}=600 / 900=2 / 3$

How to choose the sample size \mathbf{n} ?

- Idea: define both the margin of error M, and confidence level $1-\alpha$, and then obtain n (n defined as an integer)

General case: $\forall_{\downarrow} \geq z_{\alpha 2}^{2} \frac{\sigma^{2}}{M^{24}}$. Note: if σ^{2} is unknown, replace by an estimate

Bernoulli case: the previous result is considered with $\sigma^{2}=0.25$ (0.25 is the largest possible value for σ^{2}): $n \geq z_{\alpha 22}^{2} \frac{0.25}{M^{2}}$.

Example: choose the sample size in the framework of a Bernoulli population to obtain a margin of error not larger than 3% with a confidence of 95%.

Because $M=0.03$ and $1-\alpha=0.95, z_{\alpha / 2}=1.96$.
Thus, $n \geq(1.96 / 0.03)^{2} \times 0.25 \approx 1067.11$, which means that $n=1068$.

Parametric hypothesis testing (Statistics II: review)

An hypothesis test is a statistical procedure that allows to reject or not to reject, using a sample, a given "theory". Procedure:

1) Formulate the hypothesis of the test. Usually:

- $H_{0}: \mu=a$ versus $H_{1}: \mu \neq a$
but it is also possible to consider
- $H_{0}: \mu \leq a$ versus $H_{1}: \mu>a$
- $H_{0}: \mu \geq a$ versus $H_{1}: \mu<a$

2) Specify a decision rule that, for a given sample, allows to reject or not H_{0}

- Define a suitable test statistic
- Define the rejection (critical) region depends on the significance level α (typically 0.05 , or 0.01 or 0.1 - type I error - probability of rejection of a true null hypothesis)

p-value

The p-value ($p_{\text {obs }}$), is the probability of obtaining a test result at least as extreme as that observed for H_{0}, under the assumption that H_{0} is true. Small p-values suggest the rejection of H_{0}.

Interpretation of p -values

- P -value $>\alpha$: do not reject H_{0}
- P -value $<\alpha$: reject H_{0}
- For an unilateral test where H_{1} involves $>$

2) Consider the p-value: reject

Example: consider μ as the average price of a residence by m^{2}. Using a sample with $\mathrm{n}=88$, for which the mean and the variance is 1699.656 and 52133.492, test $H_{0}: \mu \leq 1600$ versus $H_{1}: \mu>1600$

- $T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{(n-1)}$

Tobs $=(1699.656-1600) /(52133.492 / 88)^{\wedge} .5 \rightarrow 4.094$
Critical value at $(0.05 ; 87) \quad \rightarrow 1.66 \quad$ Reject H_{0}

Example: consider the previous example but test $H_{0}: \mu=1600$ versus $H_{1}: \mu \neq 1600$ Critical value at $(0.025 ; 87)$

$$
\rightarrow 1.987: \quad \text { Reject } H_{0}
$$

Example: Bernoulli, large sample

$$
Z=\frac{\bar{X}-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}} \stackrel{a}{\sim} N(0,1)
$$

In a given region, 1000 individuals were asked about their opinion on the implementation of a project and 53% of them expressed their agreement. Test, for $\alpha=0.05, H_{0}: p \leq 0.5$ versus $H_{1}: p>0.5$.

- Zobs=(.53-.5)/(.5*(1-.5)/1000)^. $5=1.9$
- Critical value at $(0.05)=1.645$
- H_{0} is rejected

Example - proportions equality, large samples.

$H_{0}: \pi_{1}=\pi_{2}$
$Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)}{\sqrt{\bar{X}(1-\bar{X})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \stackrel{a}{\sim} N(0,1) \quad$ with $\bar{X}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}}{n_{1}+n_{2}}$

Consider $X_{1} \sim \operatorname{Ber}\left(\pi_{1}\right), X_{2} \sim \operatorname{Ber}\left(\pi_{2}\right), n_{1}=110, n_{2}=100, \bar{x}_{1}=0.43, \bar{x}_{2}=0.45$. Test $H_{0}: \pi_{1}=\pi_{2}$ against $H_{1}: \pi_{1} \neq \pi_{2}$
$=(0.43-0.45) /(((110 * 0.43+100 * 0.45) / 210) *(1-((110 * 0.43+100 * 0.45) / 210)) *(1 / 110+1 / 100))^{\wedge} 0.5$

$$
\rightarrow-0.29
$$

Critical value at $(0.025) \quad \rightarrow-1.96,1.96$
H_{0} is not rejected

Analysis of variance (ANOVA)

Aim: comparing averages of m normal populations

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{m}
$$

Assumptions of ANOVA

- m independent samples are available (one for each population), each one with size n_{i}, with observations $X_{i 1}, X_{i 2}, \ldots, X_{i n_{i}}(i=1,2, \ldots, m)$
- These m populations follow a normal distribution with unknown means and a common unknown variance,

$$
X_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right)\left(i=1,2, \ldots, m ; j=1,2, \ldots, n_{i}\right)
$$

- Test statistics: $F=\frac{\mathrm{MS} 1}{\mathrm{MS} 2}=\frac{\mathrm{SS} 1 /(m-1)}{\mathrm{SS} 2 /(n-m)} \sim F(m-1, n-m)$,
where $\boldsymbol{S S S}=\sum_{i=1}^{m} n_{i}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2}, \bar{X}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j}, \bar{X}_{. .}=\frac{1}{n} \sum_{i=1}^{m} n_{i} \bar{X}_{i}, S S 2=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(X_{i j}-\bar{X}_{i} .\right)^{2}$
- Rejection: $F_{o b s}>F_{\alpha}$.
- ANOVA table

Source of the variation	Sum of squares	Degrees of freedom	Squared means
Between samples	SS1	$m-1$	$\mathrm{MS} 1=\mathrm{SS} 1 /(m-1)$
Within sample	SS 2	$n-m$	$\mathrm{MS} 2=\mathrm{SS} 2 /(n-m)$
Total	SST	$n-1$	

In cases where H_{0} is rejected (there are statistically significant differences between the m means) it may be interesting to investigate for which particular means the differences are significant.

- Idea: test pairs of means - if a sussession of tests is implemented, their p-values must be corrected to avoid over rejection. One of those corrections is that of Bonferroni (no details are given but implementation in Stata is addressed)

Example: consider the following samples of 3 populations and test the equality of means

Pop 1	13	27	26	22	26		
Pop 2	43	35	47	32	31	37	
Pop 3	33	37	33	26	44	33	54

```
oneway variable population ,bonferroni
    Analysis of Variance
    Source SS df MS F Prob > F
\begin{tabular}{|c|c|c|c|c|c|}
\hline Between groups & 760.453968 & 2 & 380.226984 & 6.78 & 0.0080 \\
\hline Within groups & 841.157143 & 15 & 56.0771429 & & \\
\hline
\end{tabular}
    Total 1601.61111 17 94.2124183
Bartlett's test for equal variances: chi2(2) = 1.1727 Prob>chi2 = 0.556
    Comparison of Variable by Population
    (Bonferroni)
Row Mean-।
Col Mean | 1 2
----------++------------------------
    2 | 14.7
            0.016
    | 14.3429 -.357143
        | 0.015 1.000
```

At the 5% significance level, the equality of the 3 means is rejected. However, the equality of means 2 and 3 is not rejected. Note in the test for variance equality, the null hypothesis of equal variances is not rejected

Nonparametric hypothesis tests - Introduction

Aim: testing whether the location (typically the median) for different populations is the same, without assuming a distribution. A major difference relative to previous (parametric) tests (require normality or the presence of large samples), is that tests statistics rely on the ranking of the observations.

- Most well known tests
- Paired samples
- Sign test
- Wilcoxon signed rank test
- 2 independent samples
- Man-Whitney U test
- m independent samples
- Kruskal-Wallis test

Kruskal-Wallis test

Often considered the nonparamentric version of ANOVA. Tests:

- the mean (or median) equality across m populations.
- the distribution functions equality across m populations.
- Idea: for m independent samples (one for each population), $X_{i 1}, X_{i 2}, \ldots, X_{i n_{i}}$ $(i=1,2, \ldots, m)$: construct the observations "rank" for each sample and check whether the rank distribution is similar across the different populations.

Test description

For $n=\sum_{i=1}^{m} n_{i}$ the rank of observation $X_{i j}$ is given by $r_{i j}$. Define $S_{i}=\sum_{j=1}^{n_{i}} r_{i j}$ (sum of the ranks for sample i). The test statistics is

$$
\begin{gathered}
Q=\frac{(n-1) \times\left(S_{P}-C\right)}{\left(S_{R}-C\right)} \\
\text { where } S_{P}=\sum_{j=1}^{n_{i}}\left(S_{i}^{2} / n_{i}\right), S_{R}=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} r_{i j}^{2} \text { e } C=\frac{n \times(n+1)^{2}}{4}
\end{gathered}
$$

The distribution of Q, for large samples, is a qui-squared with $\mathrm{m}-1$ degrees of freedom. For small samples, see the specific table

Example: consider the ANOVA case

```
. kwallis pop, by(type)
Kruskal-Wallis equality-of-populations rank test
    *------------------------+
chi-squared = 笽.061 with 2 d.f.
chi-squared with ties = 9.146 with 2 d.f.
probability = 0.0103
```

At the 5% significance level, similarly to ANOVA, the mean equality is rejected.

Tests based on paired samples

- Paired sample of size n : the same individuals are observed before (X_{i}) and after a programme/treatment/change $\left(Y_{i}\right)$: for example, productivity of firm workers is measured before and after a training programme
- Idea: test whether the median of the difference $Z_{i}=Y_{i}-X_{i}$ is 0 , by checking if the probability p of a positive Z_{i} equals that of a negative

$$
H_{0}: p=0.5
$$

- Sign test
- Wilcoxon signed rank test
- Example 14.8 (Newbold) - Product Preference

An Italian restaurant created a new recipe for the sauce used on its pizza. A random sample of eight students was chosen, and each was asked to rate the the original and the new sauce on a scale 1 to 10 . Scores are shown below, with higher numbers indicating a greater liking of the product.

Test whether tastes are different

	Rating		
Original Pizza	New Pizza	$z=$ original-	
Student	Sauce	Sauce	new
A	6	8	-2
B	4	9	-5
C	5	4	1
D	8	7	1
E	3	9	-6
F	6	9	-3
G	7	7	0
H	5	9	-4

- Sign test

```
. signtest original=new
Sign test
    sign | observed expected
-------------+--------------------------
    positive | 2 3.5
    negative | 5 3.5
        zero | 1 1
    all |
    8
    8
```

Two-sided test:
Ho: median of original - new $=0$ vs.
Ha: median of original - new != 0
Pr(\#positive >= 5 or \#negative >= 5) =
min(1, 2*Binomial(n $=7, x>=5, p=0.5)$) $=0.4531$

- Wilcoxon signed rank test

```
Wilcoxon signed-rank test
    sign | obs sum ranks expected
    positive | 2 5 17.5
    negative | 5 30 17.5
        zero | 1
    1
        1
--------------+--------------------------------------
```

```
Ho: original = new
    z = -1.757
    Prob > |z| = 0.0789
```

Do not reject Ho, at the 5\% significance level

Factor analyis: Introduction

Aim: obtain a set of factors (nonobservable variables) that may explain the initial set of variables. Basically, the information of a set of variables is summarized by a smaller number of latent variables: the factors.

These techniques are based on the correlation matrix of the available variables, which contains the Pearson linear correlation coefficient:

- $r_{y x}=\frac{s_{y x}}{s_{y} s_{x}},-1 \leq r_{y x} \leq 1$, where s_{x} e s_{y} are standard deviations and $s_{x y}$ is the covariance
- This matrix, naturally contains 1 's is the principal diagonal

Factor analysis / Principal component analysis

*Structural equations: allow related factors

Factor analysis / Principal component analysis

Factor analysis:

$$
\begin{gathered}
X_{i}=a_{i 1} C F_{1}+a_{i 2} C F_{2}+\cdots+a_{i m} C F_{m}+e \\
X_{i}=\text { common part }+e
\end{gathered}
$$

Principal component analysis

$$
P C_{i}=a_{1 i} X_{1}+a_{2 i} X_{2}+\cdots+a_{p i} X_{p}
$$

where
$\mathrm{p}=\#$ variáveis, $\mathrm{m}=\#$ factors, $\mathrm{i}=1, \ldots \mathrm{n}, \mathrm{FC}=$ common factor, $\mathrm{PC}=$ principal component, e=error
a=coefficients designated as loadings (they are not regression coefficients as the factors are not observed)

Procedure:

1. Obtain the correlation matrix of the variables
2. Extract factors and choose how much of them we wish to keep
3.Factor rotation
3. Interpretation of each factor
5.Possible use of the factor in other analysis (for example, as explanatory variables of a regression model)

Correlation analysis

Kaiser-Meyer-Olken (KMO) index - summarizes the level of correlation between the variables, allowing to check whether the correlations are relevant

- 0.00 to 0.49 unacceptable
- 0.50 to 0.59 miserable
- 0.60 to 0.69 mediocre
- 0.70 to 0.79 middling
- 0.80 to 0.89 meritorious
- 0.90 to 1.00 marvelous

Factor extraction

Factors may be extracted by the principal component methods or by the method of maximum likelihood, for example

Selecting the \# of factors:

- Depend on the proportion of the variance of the original variables that is explained by the factors
- Typically the software displays the most important factor first, then the second and so on
- The proportion of variance explained by each factor is the respective eigenvalue (equals the sum of the square of the loadings) divided by p
- One may use the Kaiser criteria: keep the factors for which the eigenvalues >1

Factor rotation

The loadings associated to the factor are not unique (there are multiple solutions). Thus, often the factors are rotated, which consists essentially on the imposition of additional restrictions. This makes the interpretation of the factors easier, as the loadings that represent the contribution of each variable to the factor are more extreme:

- Orthogonal rotation: yields independent factors and loadings bounded by ± 1 (varimax, quartimax, equimax,...)
- Oblique rotation: yields factors that may be correlated (oblimax, quartimin, ...)

Factor interpretation

A designation can be issued to each factor by analysing the loadings: a higher loading in absolute value, implies a higher contribution of the variable to the factor. By considering the set of variables with higher loadings, a designation may emerge for the factor

Example: Consider a sample of 30 individuals that provided information on the determinants of changing their region of residence. For each question, the degree of agreement is indicated in a 7 -level discrete scale ($1=$ total disagreement $-7=$ total agreement) about the following topics:

V1 $=$ The residence location of the family is important
$\mathrm{V} 2=\mathrm{A}$ better wage is a major motivation for moving residence
V3 $=$ Good infrastructures and public goods are important (schools, hospitals, roads...)
V4 = Choosing a location where the cost of life is lower is important
V5 = Quality of life is not an important issue
V6 $=$ The major motivation for changing location is career progression

Correlation analysis and KMO index

. quietly factor v1 v2 v3 v4 v5 v6
. estat kmo
Kaiser-Meyer-olkin measure of sampling adequacy

Several variables display a high correlation. The KMO index is close to a suitable value. Factor analysis will be implemented.

Factor analysis: principal component method

- Two factors appear to be relevant (eigenvalues>1)
- The proportion of the variance captured by factor 1 is $45.52 \%(2.73119 / 6)$ and captured by factor 2 is (2.21812/6), in such a way that, together, the two first factors explain 82.49% of the variance of the 6 variables

Factor loadings (pattern matrix) and unique variances

Variable	Factor1	Factor2	Uniqueness
v1	0.9283	0.2532	0.0741
v2	-0.3005	0.7952	0.2773
v3	0.9362	0.1309	0.1064
v4	-0.3416	0.7890	0.2609
v5	-0.8688	-0.3508	0.1222
v6	-0.1766	0.8712	0.2099

- eigenvalues are decomposed by variable: it is possible to identify which variables have a higher contribution to the factor and, thus, interpret the factor. Loadings are high for v1, v3 and v5 for factor 1 and for v2, v4 and v6 for factor 2 . Factor 1 appears to summarize quality of life aspects and factor 2 appears to capture professional aspects.

Some calculations:

```
. display (0.9283^2+0.3005^2+0.9362^2+0.3416^2+0.8688^2+0.1766^2)
2.7312031 (eigenvalue of factor 1)
. display (0.9283^2+0.2532^2)
.92585113 (communality: part of the variables explained by the 2 factors)
. display(1-.92585113)
.07414887 (uniqueness: unexplained part of the variable)
```

. screeplot, mean

. loadingplot

Factor loadings

Factor rotation to extremate loadings and make factor interpretation easier:

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
V1	0.9620	-0.0205	0.0741
v2	-0.0626	0.8478	0.2773
v3	0.9349	-0.1401	0.1064
V4	-0.1037	0.8535	0.2609
V5	-0.9326	-0.0899	0.1222
V6	0.0778	$\mathbf{0 . 8 8 5 5}$	0.2099

Factor rotation matrix
Factor rotation matrix
Factor1 Factor2
Factor1 Factor2
Factor1 | 0.9589 -0.2837
Factor1 | 0.9589 -0.2837
Factor2 | 0.2837 0.9589
Factor2 | 0.2837 0.9589

- Loadings are now more extreme. The output provides the matrix that allows obtaing a set of loadings from the others
- Other rotation forms are available

Factor generation for each of the individuals (2 additional (latent) variables are added to the database - open the dataset)

```
. predict factor1 factor2
(regression scoring assumed)
Scoring coefficients (method = regression; based on varimax rotated factors)
        Variable | Factor1 Factor2
            v1 | 0.35833 0.01304
            v2 | -0.00380 0.37501
            v3 | 0.34543 -0.04066
            v4 | -0.01902 0.37656
            v5 | -0.34988 -0.06141
            v6 | 0.04940 0.39496
```


Factorial analysis: maximum likelihood

```
. factor v1 v2 v3 v4 v5 v6, ml
(obs=30)
number of factors adjusted to 3
Iteration 0: log likelihood = -4.9672274
```



```
    LR test: independent vs. saturated: chi2(15) = 115.57 Prob>chi2 = 0.0000
    (the model with 3 factors is saturated)
```

Factor loadings (pattern matrix) and unique variances

Variable	Factor1	Factor2	Factor3	Uniqueness
v1	0.0042	0.9852	0.0547	0.0262
v2	0.6405	-0.0773	0.3009	0.4933
v3	-0.0181	0.9004	-0.2552	0.1238
v4	0.6405	-0.1169	0.5085	0.3176
v5	-0.1364	-0.8694	-0.0093	0.2255
v6	1.0000	-0.0000	-0.0000	0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factor1	Factor2	Factor3	Uniqueness
v1	0.9838	-0.0378	0.0669	0.0262
v2 \|	-0.0555	0.6329	0.3210	0.4933
v3	0.9023	-0.0464	-0.2446	0.1238
v4	-0.0979	0.6278	0.5279	0.3176
v5	-0.8740	-0.1005	-0.0245	0.2255
v6 \|	0.0403	0.9986	0.0331	0.0000

Factor rotation matrix

\| Factor1		Factor2	Factor3
Factor1	0.0403	0.9986	0.0331
Factor2	0.9991	-0.0407	0.0123
Factor3	-0.0136	-0.0326	0.9994

