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Clustering in the field of social sciences: that is your choice
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Clustering seeks to identify a finite set of clusters to describe data. Cluster anal-
ysis is partitioning similar objects into meaningful classes, when both the num-
ber of classes and their composition are to be determined. Nowadays, we often
see illustrations concerning the use of latent class models (LCM) in the field of
cluster analysis. They provide a useful probabilistic/statistical method for group-
ing observations into clusters. In this approach to clustering, each different clus-
ter in the population is assumed to be described by a different probability
distribution, which may belong to the same family but differ in the values they
take for the parameters of the distribution. The goal of this research is cluster
analysis and LCM comparison, and methodologically we considered three data-
sets: one with solely continuous variables, one with only binary variables and
one with mixed variables. In all situations, LCM performed reasonably well; in
contrast, cluster analysis achieved both the best (90.7%, only continuous vari-
ables) and the worst performance (40%, mixed variables).

Keywords: clustering techniques; hierarchical cluster methods; latent class mod-
els; model selection; good number of clusters

1. Introduction

Clustering seeks to identify a finite set of clusters to describe data and cluster analy-
sis is a collection of statistical methods that groups similar objects into homoge-
neous groups (or clusters). Cluster analytic methods have the ability to rearrange
the data, so researchers are more aware of pattern recognition and discovery.

Cluster analysis is the partitioning of similar objects into meaningful classes,
when both the number of classes and their composition are to be determined, (Kauf-
man & Rouusseeuw, 1990). The starting point for cluster analysis is an n� n simi-
larity matrix whose cells contain indices that for all n objects show the similarity of
each and every object with each and every other object on a number of observed
variables; the purpose of cluster analysis is to find mutually exclusive groups (clus-
ters, types) of objects in such a way that the objects belonging to the same cluster
are as similar as possible and objects belonging to different clusters are as different
from each other as possible, (Hagenaars & Halman, 1989). The number of clusters
to be retained has traditionally been the Achilles’ heel of cluster analysis; one of
the more promising ways to identify the appropriate number of clusters to keep is
based on a replication and cross-validation procedure (Mandara, 2003).
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One of the primary assumptions underlying this standard method for calculating
distance is that the variables used to classify individuals into groups are continuous
in nature, (Anderberg, 1973). Unfortunately, in practice, most of the time, data-sets
are characterized by mixed data, which means that they describe individuals by
means of both categorical and continuous variables, mostly categorical.

The goal of this article is to introduce discussion on the use of cluster analysis
or latent class models (LCM) in social research by using illustrative examples.
Thus, we aim to compare hierarchical cluster analysis (HCA) and LCM in terms of
simplicity, survey size and accuracy.

2. Usefulness of cluster and latent class analysis in social sciences

In an effort to validate cluster analysis, Clements (1954) applied this technique to
the same coefficients which (Kroeber, 1939) had previously clustered by inspection,
and his results generally agreed with those obtained by Kroeber; this was viewed as
a certain validation of cluster analysis. If clustering procedures parallel procedures
utilized in broader society, then an analysis of clustering techniques can yield
insights into the manner in which social groups are formed; instead of merely using
cluster analysis as a method of studying society, the method itself can be studied on
the assumption that it is a microcosm or model of the clustering processes utilized
in society at large (Bailey, 1983).

Within the social sciences, cluster analysis has appeared frequently in sociology
but not in political science or economics, (Ahlquist & Breunig, 2009). Typological
theorizing, for example, has a distinguished tradition in social sciences (Elman,
2005; George & Nennett, 2005). A typology is a hierarchical system of categories
used to organize objects according to their similarities and dissimilarities. Therefore,
typologies can be either theoretical or numerical, (McQuitty, 1987) and numerical
typologies are the predominate approach in the social sciences. Sucoff and
Upchurch (1998) analyzed data from a special release of the Panel Study of Income
Dynamics that appends census tract information to the individual records of 940
metropolitan black women; using cluster analysis, they created neighbourhood types
that reflect the racial and economic composition of neighbourhoods where metropol-
itan blacks live. Aldenderfer and Blashfield (1984) created neighbourhood typolo-
gies using average-linkage cluster analysis of the racial composition and socio-
economic status variables, the major dimensions of neighbourhood stratification;
moreover, they selected the average-linkage clustering procedure over other cluster-
ing methods because it produced the most internally homogeneous clusters (e.g. all
neighbourhoods in one cluster were poor and black, whereas neighbourhoods in
another cluster were relatively affluent and white).

Following Vanneman (1977), the family of techniques known as HCA is espe-
cially appropriate to the analysis of stratification systems; the attractive feature of
hierarchical schemes is that, with these methods, each cluster is itself a combination
of smaller clusters; that is, a cluster need not be seen as perfectly homogeneous but
can be broken down into its constituent groups. Indeed, typologies play an
important role in sociological theory and research; besides Max Weber, many other
social scientists from the past and present have created typologies which have had
great influence on the directions sociological theory and research have taken,
(Hagenaars & Halman, 1989). It seems clear that cluster analysis and sociology are
relatively compatible. Not only can cluster analysis be used quantitatively to group
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sociological data into relatively homogeneous groups, but the study of clustering
algorithms can provide insights into the manner in which members of society are
agglomerated or divided into relatively homogeneous social groups (Bailey, 1983).
When applied, this means that while we may wish to make a basic distinction
between subordinate and dominant classes, we can still recognize internal differenti-
ation within those classes. This is the common method of conceptualizing class
structure, (Marx, 1951, p. 62), for example, argues that the French bourgeoisie was
divided into the Legitimists (the large landed proprietors) and the Orleanists (the
capitalists), with the capitalists themselves divided into the large industrialists and
the finance aristocracy; however, in its opposition to the proletariat, the bourgeoisie
was itself a single class structure.

It seems fruitful to investigate not only the degree to which cluster analysis may
be efficacious in identifying naturally occurring social groups, but also the degree
to which the study of clustering procedures themselves can help us understand how
groups are formed in larger society, (Bailey, 1983). Although favoured by some
nineteenth century sociologists, such as Spencer (1864), the explicit study of socie-
tal evolution was out of favour in sociology for quite some time before making a
mild resurgence in the 1960s (Bellah, 1964; Parsons, 1966). In particular, the ques-
tion of embourgeoisement and proletarianization can benefit from the recent
advances in cluster analysis techniques (Anderberg, 1973; Bailey, 1975; Everitt,
1974; Sneath & Sokal, 1973) have now made these advances more available to
sociologists. The ability to identify a natural social group through clustering proce-
dures depends, at least partly, on the degree to which the clustering algorithm used
replicates the classification procedures used originally to construct the homogeneous
natural social group, (Bailey, 1983). Friedkin (1978) used HCA, plus department lit-
erature about the research pursuit of faculty members, to define clusters of faculties
with relatively homogeneous research interests. A few analysts have generated
groupings more or less inductively, although the most common first-stage analytic
strategy by far is cluster analysis. Perhaps more to the point, given the reservations
many sociologists have about cluster analysis, a number of methods of cluster vali-
dation have been attempted (Abbot & Tsay, 2000).

With regard to gambling, for example, the first approach is to view gambling
motivation from a sociological perspective, (Fisher, 1993); because sociology at
base pursues research at ‘group’ level, some sociologists have sought to understand
why people gamble by focusing on why social groups choose different forms of
gambling, (Lee, Lee, Bernhard, & Yoon, 2006). The self-perception scores of
rejected children were submitted to a HCA, using the average linkage between
groups method based on the squared Euclidian distances (Boivin & Bégin, 1989).
Comparing sexual attitudes and behaviours across cultures is a concern of anthropo-
logical and sociological research, (Widmer, Treas, & Newcomb, 1998); attitudes
toward premarital sex, teenage sex, extramarital sex and homosexual sex in 24
countries were compared, and cluster analysis reveals that there are six groupings
of nations with similar moral standards. Arts and Gelissen (2002) summarize sev-
eral uses of cluster analysis in comparative social policy, on the theme of welfare
state regimes. Bambra (2007) used cluster analysis to build upon previous research
and resurrect the concept of defamilization, and in contrast to existing work in this
area, the analysis produced a five-fold typology of welfare state regimes.

While sociologists’ ability to study processes and causal models has improved
dramatically in the past two decades, the mathematical analysis of structures has
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only begun to develop, and cluster analysis, particularly HCM, holds great promise,
(Vanneman, 1977). However, important practical questions that arise in cluster anal-
ysis, such as how many clusters there are and which clustering method should be
used, remain unanswered, (Vanneman, 1977); moreover, the statistical properties of
these methods are generally unknown, precluding the possibility of formal infer-
ence. Despite the frequent use of cluster analysis, particularly for the marketing
researcher, little is known about the characteristics of available clustering methods
or how clustering methods should be employed, (Punj & Stewart, 1983). Worse
still, because there are several clustering methods and proximity measures, for each
combination (method, proximity measure) cluster analysis output (dendogram) is
quite different, which offers a number of different solutions. Written at differing
levels of detail, several sources on HCA are available, such as (Aldenderfer &
Blashfield, 1984; Anderberg, 1973; Everitt, 1974; Kaufman & Rouusseeuw, 1990;
Nunnally & Bernstein, 1994), for a more mathematically rigorous presentation in
theoretical terms.

Latent cluster analysis (LCA) was introduced in sociology in 1950 by Lazars-
feld, who used the technique as a tool for building typologies (or clustering), based
on dichotomous observed variables, and which is conceptually similar to cluster
analysis; it identifies latent classes based on observed response patterns (Clogg,
1995; Lazarsfeld & Henry, 1968; McCutcheon, 1987). The basic ideas of LCA cor-
respond well with the way social scientists use and define typologies, (Hagenaars &
Halman, 1989). LCA is used by Taylor (1983) to examine Philip Converse’s propo-
sitions about political opinion and non-opinion in the American public. Results sup-
port Converse’s black-and-white model of attitude stability, which posits the
existence of some stable opinion holders and a group of ‘non-opinion’ respondents,
whose positions vary unpredictably over time.

Intergenerational support takes many forms among contemporary American fam-
ilies, including the giving and receiving of money and material resources, care,
household assistance, companionship and advice, (Bellah, 1964; Hogan, Eggebeen,
& Clogg, 1993) as demonstrated here, these data can be much more simply ana-
lyzed by first determining the systematic latent structure of intergenerational
exchange that characterizes American families. Silverstein and Bengtson (1997)
investigate the structure of intergenerational cohesion by examining social-psycho-
logical, structural, and transactional aspects of adult child–parent relations, applying
to develop a typology based on three underlying dimensions of intergenerational
solidarity: affinity, opportunity structure and function. For Evans and Mills (1998),
the LCA presented produces a well-fitting model which identifies a set of (latent)
social classes; that is, the data is consistent with a representation of the class struc-
ture in which the 97 empirically realized response patterns derivable from the com-
binations of responses to the job characteristic items, are reduced to just four
discrete social classes; this typology of four classes, in turn, largely matches the
sorts of distinctions embodied in the Goldthorpe schema.

3. Methods of comparison

3.1. Hierarchical cluster analysis

HCA is an exploratory tool designed to reveal natural groupings (or clusters) within
a data-set that would otherwise not be apparent, and it is most useful when the aim
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is to cluster a small number (less than a few 100) of objects; otherwise, dendogram
can be quite confusing. Very often, the results of a particular cluster technique are
rather vague, in the sense that it is not at all clear how many clusters (types) ought
to be chosen. Moreover, there are many different cluster techniques (and proximity
measures) and, often, different methods yield different outcomes without there being
sound reasons for choosing one particular solution (one method) over another. Also
the size of the similarity matrix may pose a problem, even for modern computers
and programs, (Hagenaars & Halman, 1989). The traditional technique currently
used is HCA, which develops a measure of similarity (dissimilarity) between pairs
of actors, based on the network structure given. From such a measure, starting with
an empty network of N actors and no ties, the process starts with the pair with
strongest similarity, and follows by adding ties between pairs of vertices, in order
of decreasing similarity. Agglomerative hierarchical clustering models form an ini-
tial partition of N clusters (each object is a cluster) and, in stages, proceed to reduce
the number of clusters, one at a time, until all N objects are in one cluster. In the
first stage, N�1 clusters are formed by enumerating the possible fusions of N
fusions two at a time and selecting the one which optimizes the chosen criterion; in
the second stage, N�2 clusters are formed in a similar manner and so on. All hier-
archical models can be characterized by the set of partitions (P0, P1,…, PN�1) and
their corresponding criterion values α1, α2,…, αN�1, where the stages 0, 1, …, N�1
correspondingly represent N, N�1, …, 1 clusters. For partition Pj the associated
configuration of clusters can be represented by C1, C2, …, CN�j. In this context, a
stopping rule which selects the best number of clusters based on the distribution of
a clustering criterion associated with each hierarchical level is desired. Rules are
operational rather than representative of some hypothesized or derived density func-
tion, (Mojena, 1977).

HCA begins by separating each object into a cluster by itself. At each stage of
the analysis, the criterion by which objects are separated is relaxed, in order to link
the two most similar clusters until all of the objects are joined in a complete classi-
fication tree (dendogram), which is a graphical summary of the cluster solution.
Cases are listed along the left vertical axis, for example, and the horizontal axis
shows the distance between clusters when they are joined. One begins by looking
for ‘gaps’ between junctions along the horizontal axis. A significant change from
one stage to the next implies a partition which should not be undertaken where the
classification tree to determine the number of clusters is a subjective process. A
good cluster solution sees a sudden jump (gap) in the distance coefficient; the solu-
tion before the gap indicates the good solution.

In order to show this rule and how the choice of different clusters would affect
an example of a cluster analysis procedure in social science, we will use the exam-
ple used by Widmer et al. (1998), when comparing sexual attitudes and behaviours
across cultures, which is a concern of anthropological and sociological research.
From 1–24, the data-set includes the following countries: Australia, Austria, Bul-
garia, Canada, the Czech Republic, Germany (East), Germany (West), Great Britain,
Hungary, Ireland, Israel, Italy, Japan, the Netherlands, New Zealand, Northern Ire-
land, Norway, Philippines, Poland, Russia, Slovenia, Spain, Sweden and the USA.
They apply cluster analysis and they found six clusters (Table 1). We will present
the results of dendograms (Figure 1) for the following combinations method/mea-
sure: (1) average linkage (within groups)/Minkowski measure, (2) complete linkage/
Chebychev and (3) Ward/squared Euclidean distance and clusters in Table 1.
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Figure 1. Dendograms (1) average linkage (within groups)/Minkowski measure,
(2) complete linkage/Chebychev and (3) Ward/squared Euclidean distance.
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3.2. Latent class model

In model-based clustering, it is assumed that the objects under study are generated
by a mixture of probability distributions, with one component corresponding to each
class, (Zhang, 2003). These statistical models allow us to test if a group of unob-
served classes (latent) conveniently justifies the association among the observed
variables. In this context, a specific solution, constituted by a group of latent clas-
ses, is reasonable when it leads to the minimization of the association among
observed variables, within each class. This minimization is the result of the basic
assumption of independence or conditional independence.

As such, postulating a heterogeneous population, constituted by S groups or
homogeneous sub-populations, the LCM is defined by the variable Y with S catego-
ries or latent types of students, described through the observed variables, X1, X2, …,
Xp, with I1, …, Ip categories, respectively. Let λi1i2, …, iP be the probability for a
certain individual to belong to the categories (i1, i2, …, iP), relatively to the conjoint
variable (X1, X2, ..., Xp), with i1 = 1, …, I1, …, iP. In these conditions, supposing the
existence of a latent variable Y, with S categories, explaining the relationships among
the observed variables, the probability λi1i2 … iP can be defined by the model

ki1i2:::iP ¼
XS

s¼1

kYðsÞ kX1jY¼sði1Þ kX2jY¼sði2Þ � � � kXPjY¼sðiPÞ;

where λY(s) represents the probabilities of Y= s, probabilities that an individual
belongs to the latent class s (s= 1, …, S), that is, the probabilities of the latent clas-
ses, also designated by relative sizes or mixture proportions, which estimate the
likelihood that individuals belong to each one of the classes.

kXpjY¼sðipÞ; p= 1, …, P, represents the conditional probability that the variable
Xp is in the category ip, knowing that the latent variable Y is on level s. In estimat-
ing LCM, the estimates of the probabilities of the latent classes or relative sizes and
certain individual’s conditional probabilities are of fundamental importance in their
structure, to take values in certain categories of the observed variables, given that it
is a member of a class of the latent variable.

The proportions of the latent classes describe the distribution of probability of
the latent classes or typologies; they become useful in the description of the typolo-
gies’ prevalent within the population and in the comparison of those prevalent
among sub-populations.

For a more complete description of estimation of LCM, see (Fonseca, 2010,
2011; Fonseca & Cardoso, 2007; McLachlan & Peel, 2000).

In relation to methodologies for selecting the appropriate LCM, we propose tra-
ditional information criteria: we used the information criterion Akaike’s information
criterion (AIC3), which is most suitable for data-sets with only categorical variables
and data-sets with mixed variables, and Bayesian information criterion (BIC), the
most appropriate for a data-set with solely continuous variables, (Fonseca, 2010;
Fonseca & Cardoso, 2007). Therefore, we will select a model that is the best for
presenting the minimum value for AIC3 (BIC) or an elbow, instead.

We retain six clusters in the three situations, in order to be comparable with
Widmer, Treas and Newcomb’s results, and we can see several differences in cluster
composition.
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4. Methodology

In terms of HCA and LCM comparison, we will apply these models to uncover the
data pattern in an understandable way. In relation to cluster analysis, we intend to
use several combinations of clustering methods and (dis)similarities measures; for
latent class analysis, we will use information criteria for model selection.

In order to obtain comparable results, we will use real data-sets with known
number of clusters. Three data-sets were used in this research: (1) Fisher’s data-set
with only continuous variables; (2) Store, data-set with only categorical variables
and (3) North Central Wisconsin, data-set with continuous and categorical variables
(mixed data). These data-sets were selected because of the knowledge we have con-
cerning the true number of clusters, 3, 2, 3, respectively.

There are several quite different methods for extracting communities, and Statis-
tical Package for Social Sciences-18 provides a clustering programme that imple-
ments a variety of hierarchical agglomerative procedures: when applying cluster
analysis for each data-set, we will use three proximity measures (Squared Euclidean
distance, Chebychev distance and Minkowski distance for both continuous and
mixed data-sets and Binary squared Euclidean distance, pattern differences and
Rogers Tanimoto for categorical data-set, Table 2) with each one of the four cluster-
ing methods (average linkage (between groups), average linkage (within groups),
complete linkage and Ward method), based on Milligan’s (1981) study.

Because several solutions are possible, at least one for each combination
method/dissimilarity measure, hierarchical clustering may not be a good choice in
order to detect community structure. We suppose that for all combinations (method
and measure) cluster analysis identifies the true number of clusters.

5. Data analysis and discussion of results

Broadly speaking, the typical procedure for conducting a cluster analysis method
includes the following steps: select a sample of entities; define a set of variables
according to which the entities are measured, select a combination (cluster method
and proximity measure) to use; calculate measures of proximity between all the
entities; group the entities together based on their proximity scores using the
selected clustering algorithm and create a graphic depiction of the groupings that
emerge, in order to facilitate interpretation of the results. Choosing the variables for
the clustering is as fundamental a problem to cluster analysis as the choice of
method. We applied the two methods to data-sets with the same set of variables –
clustering variables.

Table 2. Proximity measures used.

Measure Summary description

Squared Euclidean distance
P
k–i;j

ðxi;k � yj;kÞ2

Chebychev distance dij ¼ max
k

jxi;k � yj;k j
Minkowski distance p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k–i;j

ðxi;k � yj;kÞ2
r

Binary squared Euclidean distance BSEUCLID(x,y) = b+ c
Pattern difference bc/(n⁄⁄2) (from a fourfold table)
Rogers and Tanimoto RT(x,y) = (a+ d)/(a + d + 2(b+ c))
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By reformulating cluster analysis as a problem in estimation for mixed distribu-
tions or LCM, no ‘similarities’ or ‘distances’ need to be assumed a priori, (Wolf,
1970) the closest analogy to a ‘similarity’ in mixed distributions is the probability
of membership of a point in a cluster; however, this probability is the result of an
iterative solution to the likelihood equations rather than an arbitrarily given func-
tion.

5.1. Fisher’s continuous data-set

We start this study with a continuous data-set, Fisher’s data-set. We will analyze
data by means of cluster analysis and LCM. We intend to display the matrix confu-
sion or cross-tabs for true and estimated number of clusters (Tables 3–15), in order

Table 3. Class� average linkage (between groups).

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 50 0 50
Class 3 0 38 12 50
Total 50 88 12 150

Table 4. Class� average linkage (within groups).

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 23 27 50
Class 3 0 49 1 50
Total 50 72 28 150

Table 5. Class� complete linkage.

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 23 27 50
Class 3 0 49 1 50
Total 50 72 28 150

Table 6. Class�ward linkage.

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 49 1 50
Class 3 0 15 35 50
Total 50 64 36 150
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Table 8. Class� average linkage (within groups).

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 50 0 50
Class 3 0 14 36 50
Total 50 64 36 150

Table 7. Class� average linkage (between groups).

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 50 0 50
Class 3 0 40 10 50
Total 50 90 10 150

Table 11. Class� average linkage (between groups).

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 50 0 50
Class 3 0 14 36 50
Total 50 64 36 150

Table 9. Class� complete linkage.

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 21 29 50
Class 3 0 44 6 50
Total 50 65 35 150

Table 10. Class�ward linkage.

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 50 0 50
Class 3 0 15 35 50
Total 50 65 35 150
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to know the percentage correctly classified by each one of the used combinations
(method and measure) and LCM, for comparison.

In this study, we intend to compare the two techniques only in terms of classifi-
cation, not in terms of model selection. So we apply cluster analysis where the
number of clusters is known; in relation to LCM, we use information criteria, BIC
or AIC3 for model selection.

5.1.1. Squared Euclidean distance

Firstly, we used squared Euclidean distance with average linkage method, trying to
uncover the known pattern (true number of classes: three). By using the cluster

Table 12. Class� average linkage (within groups).

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 23 27 50
Class 3 0 49 1 50
Total 50 72 28 150

Table 13. Class� complete linkage.

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 23 27 50
Class 3 0 49 1 50
Total 50 72 28 150

Table 14. Class�ward linkage.

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 50 0 50
Class 3 0 14 36 50
Total 50 64 36 150

Table 15. Class�LCM (89.3%).

Count

Cluster

Total1 2 3

Class 1 50 0 0 50
Class 2 0 48 1 50
Class 3 0 14 36 50
Total 50 62 37 150
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analysis outcomes, we ran a cross-tab (Table 3) with class (true number of clusters)
and clusters (the number of clusters by cluster analysis). As we can see from this
result, cluster analysis correctly classified 74.7% of cases.

Secondly, we used squared Euclidean distance with average linkage method and
we can see from this result that cluster analysis correctly classified 49.3% of cases
(Table 4).

Thirdly, we used squared Euclidean distance with complete linkage method and
we can see from this result that cluster analysis correctly classified 49.3% of cases
(Table 5).

Next, we used squared Euclidean distance with the Ward linkage method and
we can see from this result that cluster analysis correctly classified 89.3% of cases
(Table 6).

5.1.2. Chebychev distance

Firstly, we used Chebychev distance with average linkage method, in order to
uncover the known pattern. With the cluster analysis outcomes, we ran a cross-tab
(Table 7) with class and clusters. As we can see from this result, cluster analysis
correctly classified 73.3% of cases.

Secondly, we used Chebychev distance with average linkage method and we
can see from this result that cluster analysis correctly classified 90.7% of cases
(Table 8).

Thirdly, we used Chebychev distance with complete linkage method and we can
see from this result that cluster analysis correctly classified 51.3% of cases (Table 9).

Lastly, we used Chebychev distance with Ward linkage method and we can see
from this result that cluster analysis correctly classified 90% of cases (Table 10).

5.1.3. Minkowski distance

Firstly, we used Minkowski distance with average linkage method, in order to
uncover the known pattern. With the cluster analysis outcomes we ran a cross-tab
(Table 11) with class and clusters. As we can see from this result, cluster analysis
correctly classified 90.7% of cases.

Secondly, we used Chebychev distance with average linkage method and we
can see from this result that cluster analysis had correctly classified 49.3% of cases
(Table 12).

Thirdly, we used Chebychev distance with complete linkage method and we can
see from this result that cluster analysis correctly classified 49.3% of cases
(Table 13).

Lastly, we used Chebychev distance with Ward linkage method and we can see
from this result that cluster analysis correctly classified 90.7% of cases (Table 14).

5.1.4. Latent class model

Here, we estimated LCM. We started the process with the baseline model (homoge-
neity) and proceeded with the estimation of 2–4 LCM. The BIC information crite-
rion (used in this case because all the indicators are continuous) selected a three
LCM. From the confusion matrix (Table 15), we can see that this model correctly
classified 89.3% of cases.
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First of all, we can highlight the wide range of percentages of recovering the
cluster structure of data: from 49.3 to 90.7%. Even for data-sets with only continu-
ous variables, some combinations (method and measure) offer excellent results, oth-
ers very poor ones. The best results are associated with Ward linkage method.

In relation to LCM outcomes, this is very similar to the best cluster analysis
result (89.3%).

5.2. Store – categorical data-set

This is a data-set with binary variables, and there are several measures concerning
the use of cluster analysis in these situations. We cannot use measures such as Jac-
card, Phi four-point correlation, Sokal and Sneath measures, Yule’s measures, Ochi-
ai measure or Anderberg’s. As a result, we decided to use binary squared Euclidean
distance, pattern difference and Rogers’ and Tanimoto measure, as follows.

5.2.1. Binary squared Euclidean distance

Once again, we began with squared Euclidean distance and average linkage method,
in order to uncover the known pattern. With the cluster analysis outcomes, we ran a
cross-tab (Table 16) with class and clusters. As we can see from this result, cluster
analysis correctly classified only 37.5% of cases.

Second, we used squared Euclidean distance with average linkage method and
we can see from this result that cluster analysis correctly classified 42.6% of cases
(Table 17).

Third, we used squared Euclidean distance with complete linkage method and
we can see from this result that cluster analysis correctly classified 37.5% of cases
(Table 18).

Finally, we used squared Euclidean distance with Ward linkage method and we
can see from this result that cluster analysis correctly classified 67.3% of cases
(Table 19).

Table 16. Store� average linkage (between groups) (37.5%).

Cluster

TotalDepartment Speciality

Store Department 66 108 174
Speciality 247 147 394

Total 313 255 568

Table 17. Store� average linkage (within groups).

Cluster

TotalDepartment Speciality

Store Department 66 108 174
Speciality 218 176 394

Total 284 284 568
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5.2.2. Pattern difference

Here, we started using the new pattern difference measure and average linkage, which
achieved some of the poorest results: only 41.5% of recovering data (Table 20).

Secondly, we used pattern difference measure and average linkage method and
we can see from this result that cluster analysis correctly classified only 45% of
cases (Table 21).

Thirdly, we used pattern difference measure with complete linkage method and
we can see from this result that cluster analysis correctly classified 42.8% of cases
(Table 22).

Finally, we used pattern difference measure with Ward linkage method and we
can see from this result that cluster analysis correctly classified 37.7% of cases
(Table 23).

Table 18. Store� complete linkage.

Cluster

TotalDepartment Speciality

Store Department 66 108 174
Speciality 247 147 394

Total 313 255 568

Table 19. Store�ward method.

Cluster

TotalDepartment Speciality

Store Department 128 46 174
Speciality 140 254 394

Total 268 300 568

Table 20. Store� average linkage (between groups).

Cluster

TotalDepartment Speciality

Store Department 124 50 174
Speciality 282 112 394

Total 522 46 568

Table 21. Store� average linkage (within groups).

Cluster

TotalDepartment Speciality

Store Department 174 0 174
Speciality 312 82 394

Total 486 82 568
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5.2.3. Rogers’ and Tanimoto measure

First, we used the new measure Rogers’ and Tanimoto measure and average linkage
and they only achieved 37.5% of recovering data (Table 24).

Second, we used Rogers’ and Tanimoto measure with average linkage method
and we can see from this result that cluster analysis correctly classified only 72.7%
of cases (Table 25).

Third, we used Rogers’ and Tanimoto measure with complete linkage method
and we can see from this result that cluster analysis correctly classified 37.5% of
cases (Table 26).

Finally, we used Rogers’ and Tanimoto measure with Ward linkage method and
we can see from this result that cluster analysis correctly classified 57.6% of cases
(Table 27).

Table 22. Store� complete linkage.

Cluster

TotalDepartment Speciality

Store Department 123 51 174
Speciality 274 120 394

Total 522 46 568

Table 23. Store�ward method.

Cluster

TotalDepartment Speciality

Store Department 66 108 174
Speciality 246 148 394

Total 312 256 568

Table 24. Store� average linkage (between groups).

Cluster

TotalDepartment Speciality

Store Department 66 108 174
Speciality 247 147 394

Total 313 255 568

Table 25. Store� average linkage (within groups).

Cluster

TotalDepartment Speciality

Store Department 174 0 174
Speciality 155 239 394

Total 366 202 568
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5.2.4. Latent class model

From the application of LCM estimation and AIC3 information criterion for model
selection, results show us that this model correctly classified 72% of cases.

To sum up, in relation to Store data-set (with only binary variables), cluster
analysis performance ranges from 28.2 (average linkage) to 72.7% (complete link-
age); LCM performed relatively well, with 72% of cases correctly classified.

5.3. North central Wisconsin – mixed data-set

This is the most complex example (the mixed case) because there are no studies
that suggest the most appropriate measures for this case, in case of cluster analysis.
As such, we decided to use the same measures we used for data-sets with continu-
ous variables.

5.3.1. Squared Euclidean distance

Firstly, we use the squared Euclidean distance and average linkage, which only
achieved 32.9% of recovering data (Table 28).

Secondly, we used squared Euclidean distance with average linkage method and
we can see from this result that cluster analysis correctly classified 40% of cases
(Table 29).

Table 28. Stratum� average linkage (between groups).

Cluster

Total1 2 3

Stratum 1 50 0 0 50
Stratum 2 56 0 0 56
Stratum 3 46 2 1 49
Total 152 2 1 155

Table 27. Store�ward method.

Cluster

TotalDepartment Speciality

Store Department 128 46 174
Speciality 195 199 394

Total 320 248 568

Table 26. Store� complete linkage.

Cluster

TotalDepartment Speciality

Store Department 66 108 174
Speciality 247 147 394

Total 313 255 568
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Thirdly, we used squared Euclidean distance with complete linkage method and
we can see from this result that cluster analysis correctly classified 36.1% of cases
(Table 30).

Finally, we used squared Euclidean distance with Ward linkage method and we
can see from this result that cluster analysis correctly classified 38.7% of cases
(Table 31).

Cluster analysis performed very poorly with all clustering methods and squared
Euclidean distance, ranging from 32.9% (average linkage) to 40% (Ward).

5.3.2. Chebychev distance

Firstly, we used the Chebychev distance and average linkage and they only
achieved 32.9% of recovering data (Table 32).

Secondly, we used Chebychev distance and average linkage method and we can
see from this result that cluster analysis correctly classified 34.8% of cases
(Table 33).

Thirdly, we used Chebychev distance with complete linkage method and we can
see from this result that cluster analysis correctly classified 32.9% of cases
(Table 34).

Table 30. Stratum� complete linkage.

Cluster

Total1 2 3

Stratum 1 47 3 0 50
Stratum 2 49 7 0 56
Stratum 3 26 21 2 49
Total 122 31 2 155

Table 31. Stratum�ward method.

Cluster

Total1 2 3

Stratum 1 44 6 0 50
Stratum 2 42 14 0 56
Stratum 3 15 32 2 49
Total 101 52 2 155

Table 29. Stratum� average linkage (within groups).

Cluster

Total1 2 3

Stratum 1 48 4 0 50
Stratum 2 52 12 0 56
Stratum 3 35 2 2 49
Total 135 18 2 155
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Finally, we used Chebychev distance with Ward linkage method and we can see
from this result that cluster analysis correctly classified 38.7% of cases (Table 35).

Again, the performances are very poor when the four clustering methods with
Chebychev distance are used.

5.3.3. Minkowski distance

We began using Minkowski distance with average linkage and they achieve only
29% of recovering data (Table 36).

Table 35. Stratum�ward method.

Cluster

Total1 2 3

Stratum 1 44 6 0 50
Stratum 2 42 14 0 56
Stratum 3 15 32 2 49
Total 101 52 2 155

Table 33. Stratum� average linkage (within groups).

Cluster

Total1 2 3

Stratum 1 48 2 0 50
Stratum 2 52 4 0 56
Stratum 3 35 12 2 49
Total 135 18 2 155

Table 34. Stratum� complete linkage.

Cluster

Total1 2 3

Stratum 1 50 0 0 50
Stratum 2 56 0 0 56
Stratum 3 46 2 1 49
Total 152 2 1 155

Table 32. Stratum� average linkage (between groups).

Cluster

Total1 2 3

Stratum 1 50 0 0 50
Stratum 2 56 0 0 56
Stratum 3 46 2 1 49
Total 152 2 1 155
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We then proceeded with Minkowski distance with average linkage method and
we can see from this result that cluster analysis correctly classified 34.2% of cases
(Table 37).

Thirdly, we used Minkowski distance with complete linkage method and we can
see from this result that cluster analysis correctly classified 36.1% of cases
(Table 38).

Finally, we used Minkowski distance with Ward linkage method and we can see
from this result that cluster analysis correctly classified 38.7% of cases (Table 39).

Table 36. Stratum� average linkage (between groups).

Cluster

Total1 2 3

Stratum 1 44 0 0 50
Stratum 2 42 0 0 56
Stratum 3 15 2 1 49
Total 152 2 1 155

Table 37. Stratum� average linkage (within groups).

Cluster

Total1 2 3

Stratum 1 48 2 0 50
Stratum 2 52 4 0 56
Stratum 3 37 11 1 49
Total 137 17 1 155

Table 38. Stratum� complete linkage.

Cluster

Total1 2 3

Stratum 1 47 3 0 50
Stratum 2 49 7 0 56
Stratum 3 26 21 2 49
Total 122 31 2 155

Table 39. Stratum�ward linkage.

Cluster

Total1 2 3

Stratum 1 44 6 0 50
Stratum 2 42 14 0 56
Stratum 3 15 32 2 49
Total 101 52 2 155

422 J.R.S. Fonseca



Once again, cluster analysis performs very poorly, ranging from 29 (average
linkage) to 38.7% (Ward).

5.3.4. Latent class model

Now we use LCM estimation with AIC3 information criterion for model selection,
and we can see from the results that this model performs better, correctly classifying
71.6% of cases (Table 40)!

We have just seen that cluster analysis performs worse than LCM in relation to
mixed data-sets, whatever the combination used (method and measure).

6. Conclusion

In relation to Fisher’s data-set, we can summarize the main findings as follows.
Using squared Euclidean distance leads to similar results both with within

groups (Table 4) and complete linkage (Table 5). However, they are quite different
from the results achieved with between groups (Table 3) and Ward linkage (Table 6).
As for Chebychev’s distance, it leads to similar results both with the within groups
method (Table 8) and Ward linkage (Table 10). However, they are quite different
from the results achieved with between groups (Table 7) and complete linkage
(Table 9). In relation to Minkowski, it leads to similar results both with within
groups (Table 12) and complete linkage (Table 13). However, they are quite differ-
ent from the results achieved with between groups (Table 11) and Ward linkage
(Table 14), which are similar.

In Table 41, we display all percentages of structure recovery for all data-sets
and method/measure combinations.

In relation to Fisher’s continuous data-set, we can see that Chebychev distance
with the within groups method and Minkowski distance with both between groups
and Ward methods achieving the best performance (90.7%), followed by squared
Euclidean distance and Ward method, and LCM with 89.3%.

As far as categorical data-set Store is concerned, the best performance goes with
Rogers’ and Tanimoto measure and the within groups method (72.7%), followed by
LCM with 72%.

Finally, as for mixed data-set, North Central Wisconsin, the best performance is
obtained by LCM with 71.6%, followed by squared Euclidean distance with the
within groups method with 40%.

To sum up, we can conclude that HCA is a very sensitive technique to both the
choice of clustering method and the (dis)similarity; LCM perform well in all situa-
tions, categorical data-set, continuous data-set and mixed data-set, both in selecting

Table 40. Stratum�LCM.

Cluster

Total1 2 3

Stratum 1 44 6 0 50
Stratum 2 38 18 0 56
Stratum 3 0 0 49 49
Total 82 24 49 155
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Table 41. Performances’ performance.

Data-set Method Measure
Percentage of structure

recovery

Fisher’s data-set Between
groups

Squared Euclidean
distance

74.7

Within groups 49.3
Complete
linkage

49.3

Ward 89.3
Between
groups

Chebychev distance 73.3

Within groups 90.7
Complete
linkage

51.3

Ward 90
Between
groups

Minkowski distance 90.7

Within groups 49.3
Complete
linkage

49.3

Ward 90.7
Latent class
Model

89.3

Store Between
groups

Binary squared Euclidean
distance

37.5

Within groups 42.6
Complete
linkage

37.5

Ward 67.3
Between
groups

Pattern difference 41.5

Within Groups 45
Complete
linkage

42.8

Ward 37.7
Between
groups

Rogers and Tanimoto 37.5

Within groups 72.7
Complete
linkage

37.5

Ward 57.6
Latent class
Model

72

North Central
Wisconsin

Between
groups

Squared Euclidean
distance

32.9

Within groups 40
Complete
linkage

36.1

Ward 38.7
Between
groups

Chebychev distance 32.9

Within groups 34.8
32.9

(Continued)
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the true pattern (true number of clusters), and in percentage of recovering, 89.3, 72
and 71.6%, respectively. Moreover, the researcher does not need to choose a
method or a measure from the wide range methods and measures available, and
interpret several dendograms, in order to become aware the data structure.

Rather than relying on predetermined cut-off points, this multivariate approach
assumes an underlying categorical latent variable that determines an individual’s
class membership.

Unlike HCA, the LCM is model based or probabilistic, which implies that the
model can be replicated with an independent sample, (Muthén & Muthén, 2000).
These probabilistic/statistical models allow us to test if a group of unobserved clas-
ses (latent) justifies the association among the observed variables.

On the issue of data analysis, the LCM approach to clustering offers some
advantages when compared to other, more traditional techniques:

(1) An important difference between standard cluster analysis techniques and LC
clustering is that the latter is a model-based approach. This means that a sta-
tistical and probabilistic model is postulated for the population from which
the data sample is obtained. An advantage of using a statistical and probabi-
listic model is that the choice of the cluster criterion is less arbitrary and the
approach includes rigorous statistical tests, (Magidson & Vermunt, 2002).

(2) There is no need to standardize variables. Before performing hierarchical
clustering, analysts must standardize variables to have equal variance to
avoid obtaining clusters that are dominated by variables having the most var-
iation. Such standardization does not completely solve the problems associ-
ated with scale differences since the clusters are unknown and so it is not
possible to perform a within cluster standardization. In contrast, the LC clus-
tering solution is invariant of linear transformations on the variables, so stan-
dardization of variables is not necessary, (Vermunt & Magidson, 2002).

(3) Determination of the number of clusters. Hierarchical clustering methods
provide no assistance in determining the number of clusters. In contrast, LC
clustering provides various diagnostics such as theoretical information criteria
or likelihood ratio test, which can be useful in determining the number of
clusters, (Dillon & Kumar, 1994; McLachlan & Peel, 2000).

Table 41. (Continued).

Data-set Method Measure
Percentage of structure

recovery

Complete
linkage
Ward 38.7
Between
groups

Minkowski distance 29

Within groups 34.2
Complete
linkage

36.1

Ward 38.7
Latent class
model

71.6
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(4) Inclusion of variables of mixed scale types. Hierarchical clustering methods
are limited to interval scale quantitative variables. In contrast, extended LCM
can be estimated in situations where the variables are of different scale types.
Variables may be continuous, categorical (nominal or ordinal) or counts or
any combination of these (Vermunt & Magidson, 2002). If all variables are
categorical, one obtains a traditional LC model (Goodman, 1974).

(5) Inclusion of demographics and other exogenous variables. A common
practice following a hierarchical clustering is to use discriminant analysis
to describe differences between the clusters on one or more exogenous
variables. In contrast, the LC cluster model can be easily extended to
include exogenous variables (covariates). This allows both classification
and cluster description to be performed simultaneously using a single uni-
form maximum likelihood estimation algorithm (Fonseca & Cardoso,
2007; Vermunt & Magidson, 2002).
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