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to the “obviousness” of a test—the degree to which the
purpose of the test is apparent to those taking it. Tests
wherein the purpose is clear, even to naı̈ve respondents,
are said to have high face validity; tests wherein the
purpose is unclear have low face validity (Nevo, 1985).
The concept of face validity is similar to item subtlety,
but there are important differences as well. Whereas
face validity describes the transparency of an entire test,
item subtlety describes the transparency of individ-
ual test items (Bornstein, Rossner, Hill, & Stepanian,
1994). It is possible to construct a test wherein the
purpose of individual test items is not apparent, but
when these items are scrutinized as a group, the purpose
of the test as a whole becomes obvious.

Face validity has contrasting effects on different
types of tests. Studies indicate that high face validity
can facilitate performance on intelligence, aptitude,
and achievement tests: When the purpose of the test
seems clear, testees are less anxious and more moti-
vated to persevere, even when test items are highly
challenging (Messick, 1995; Nevo, 1985).

High face validity can be a liability when a test
is designed to assess some aspect of personality or
psychopathology. In this situation, high face validity
enables respondents to bias their responses to present
themselves as they want to be seen by the examiner.
Studies show that naı̈ve respondents are able to “fake
good” and “fake bad” more effectively on tests with
high face validity than those with low face validity
(Bornstein, 2002; Bornstein et al., 1994).

There are two general methods for evaluating the
face validity of a test. Some psychometricians have
taken a direct approach, asking participants to iden-
tify the purpose of an assessment instrument from
among an array of likely choices. To the degree that
participants can do this accurately, the test has high
face validity. Other researchers have taken an indirect
approach, asking participants to deliberately bias their
answers to raise or lower their scores on the test. To
the degree that participants can alter their scores in this
way, the test is presumed to have high face validity and
to be susceptible to self-presentation effects in vivo
(Bornstein, 2002).

Given its importance for psychological tests, face
validity should always be assessed and controlled
during test development. Several strategies are useful.
For example, test items can be worded subtlely, so the
true purpose of the measure is masked. Alternatively,
test items can be ordered so that those from a given
subscale do not appear in proximity to each other; this

has also been shown to lower the face validity of the
test. Finally, distracter items unrelated to the true pur-
pose of the test can be included so that the content of
genuine test items is less obvious. This latter strategy
is particularly effective, when combined with the other
two approaches, for disguising the purpose of the test.

—Robert F. Bornstein
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FACTOR ANALYSIS

In general, the term factor analysis refers to any one
of a number of similar but distinct multivariate statis-
tical models that model observed variables as linear
functions of a set of latent or hypothetical variables
that are not directly observed, known as factors.

Factor analysis models are similar to regression
models in that they possess dependent variables
that are linear functions of independent variables.
But unlike regression, the independent variables of the
factor analysis models are not observed independently
of the observed dependent variables.

Factor analysis models may be further distinguished
according to whether the factor variables are determi-
nate or not. Factors are determinate if they can be
derived in turn as linear functions of the observed
variables. Otherwise, they are indeterminate. Deter-
minate models encompass the various component
analysis models, such as principal components
analysis (Hotelling, 1933; Joliffe, 1986; Pearson,
1901); weighted principal components (Mulaik, 1972);
and Guttman’s image analysis (Guttman, 1953). Inde-
terminate models are represented by the common
factor model (Spearman, 1904; Thurstone, 1947),
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which seeks to account for the covariation between
the observed variables as the result of the observed
variables’ sharing in varying degrees the influences
of the variation of a common set of common factor
variables.

Determinate factor analysis models are often useful
in a data reduction role by finding a smaller number of
variables that capture most of the information of vari-
ation and covariation among the observed variables.
Scores on the determinate factors can be computed
as linear combinations of the observed variables.
These factor scores may be used as independent and
dependent variables—as the case warrants—in other
multivariate statistical procedures, such as multivari-
ate regression or multivariate analysis of variance.
However, for substantive theoretical work, the main
drawback of these determinate component analysis
models is that their factors represent statistical artifacts
unique to the set of observed variables determining
them (Mulaik, 1987). Change the set of observed
variables, and you obtain different linear combinations.
The component factors have no independent existence
apart from the set of observed variables of which they
are linear combinations.

In contrast, the common factors of the common
factor model are indeterminate from the observed
variables and are not linear combinations of them.
Common factors can correspond to variables having
an independent existence, and, in the theory of simple
structure in common factor analysis (Thurstone, 1947),
different sets of observed variables from a domain can
be linear functions of the same common factors. Thus,
for the purposes of discovering autonomous variables
that have theoretical import as common causes of
other variables, the common factor model is generally
preferred to a determinate component analysis model.

However, the common factor model has limits to its
application. Common factor analysis is limited to the
case where there is no natural order among the observed
variables. The only ordering principle permitted by
the common factor model is the relation of functional
dependency of observed variables on latent variables.
No provision exists in the common factor model
for functional dependencies between latent variables.
Relations between latent variables only take the form
of correlations or covariances, which are nondirec-
tional and nonordering. But variables that are naturally
ordered in time, space, or degree of some attribute
may be more correlated with the variables immediately
adjacent to them and have diminishing correlations

with variables farther from them in the natural ordering.
In these cases, in addition to functional dependen-
cies of observed variables on latent variables, each
successive latent variable corresponding to one of the
observed variables in the order may be a linear function
of only the immediately preceding latent variable in
the order plus some new latent variable unique to it.
Models with this property are known as simplex models
(Jöreskog, 1979). To deal with this and other cases,
structural equation modeling is more appropri-
ate because it has provisions for establishing linear
functional relations between latent variables. Thus, if
one is to apply the common factor model properly
to a set of observed variables, one must take care to
determine at the outset that there is no apparent natural
ordering among the variables. Although the common
factor model may fit well to such data with a small
number of common factors, the factors will usually
defy theoretical interpretation (Jones, 1959).

Factor analysis models also can be distinguished
as to whether they are exploratory or confirmatory.
Exploratory common factor analysis is principally ana-
lytic, used in situations where there is minimal knowl-
edge of the constituent factor variables of a domain of
variables believed to conform to the common factor
model. The aim is to analyze the observed variables
to “discover” constituent variables that are more basic.
Confirmatory factor analysis is principally synthetic. It
is used where there is sufficient knowledge to formu-
late hypotheses as to how certain theoretical variables
function as factors common to a number of observed
variables. The theory allows one to predict within
certain constraints the pattern of covariances among
the observed variables and to test for this pattern
(see confirmatory factor analysis). The rest of
this article will be about exploratory common factor
analysis.

EQUATIONS OF EXPLORATORY
FACTOR ANALYSIS

The equations of factor analysis are usually
expressed in matrix algebra. Thus, the model equation
of common factor analysis is given by the following
matrix equation:

Y = �X+ E,

where Y is a p × 1 column vector of p observed
random variables; Λ is a p×mmatrix of factor pattern
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loadings λij , which are analogous
to regression coefficients; X is an
m × 1 column vector of common
factor random variables; and E is a
p × 1 column vector of p unique
factor random variables.

One then assumes the following:
(a) The common and unique factor
variables are uncorrelated, that is,
cov(X,E) = 0; and (b) the unique
factors are mutually uncorrelated,
that is, cov(E) = Θ2 = a diagonal
matrix.

From the model equation and
these assumptions, we are able
to derive the fundamental theorem
of the common factor model,
expressed as

cov(Y) = � = ���′ +Θ2,

where � is the p × p variance-covariance matrix for
the p observed variables, � is the p×m factor pattern
matrix of elements λij ,� is them×mmatrix of vari-
ances and covariances among the common factors,
and Θ2 is a p × p diagonal matrix of unique factor
variances. Because Θ2is a diagonal matrix with zero
off-diagonal elements, the off-diagonal elements of the
covariance matrix � are due only to the off-diagonal
elements of ���′, which is a function of only the
common factor variables.

STEPS IN PERFORMING A FACTOR
ANALYSIS: A WORKED EXAMPLE

Step 1: Choosing or Constructing
Variables

It is best to select or construct variables represent-
ing some domain of activity in a systematic manner.
L. L. Thurstone (1947), a pioneer in the field of factor
analysis, believed that a domain of variables is defined
by the common factors that span it. Thus, one must con-
sider the possible common factors that might exist in
the domain. Then, for each of those anticipated factors,
one should select or construct at least four indicator
variables that one believes are relatively pure measures
of those factors. Four indicators of an anticipated factor
overdetermine the factor.

As an example, Carlson and Mulaik (1993) selected
15 variables based on 15 bipolar personality rating
scales shown in Table 1 that they expected would

Table 1 Fifteen Bipolar Personality Rating Scales Used to Produce
15 Variables for the Factor Analysis Study

represent four factors of personality: (a) friendli-
ness, represented by the bipolar rating scales friendly-
unfriendly, sympathetic-unsympathetic, kind-unkind,
and affectionate-unaffectionate; (b) ability, repre-
sented by the scales intelligent-unintelligent, capable-
incapable, competent-incompetent, and smart-stupid;
(c) extraversion, represented by talkative-untalkative,
outgoing-withdrawn, gregarious-solitary, extraverted-
introverted, and sociable-unsociable. They antici-
pated that variables such as helpful-cooperative and
cooperative-uncooperative would be concepts repre-
senting a combination of friendliness and ability, and
would have “loadings” on these factors plus loadings
on (d) an additional factor unique to them alone.

Step 2: Obtaining Scores on Variables
and Computing Correlation Matrix

Carlson and Mulaik (1993) then had 280 students
rate randomly selected descriptions of people in a work
setting on the 15 rating scales. The correlations among
the 15 scales were then obtained and are given in
Table 2.

Step 3: Determining Number of Factors

The extraction of factors is based on the matrix
of correlations between factors. However, a deci-
sion must be made at this point as to which method
of factor extraction to use to find the estimates for
the factor pattern coefficients, the correlations among
the common factors, and the unique factor variances,
which will be the basis for the ultimate interpretation of
the analysis. The program used to perform this analysis
was SPSS FACTOR Version 4.0 for the Macintosh
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Table 2 Correlations Among 15 Variables

computer. (Later versions are essentially unchanged
in these options.) The program offers several methods
of factor extraction appropriate for a common factor
analysis. These are principal axis factoring, which is
essentially unweighted least squares; unweighted least
squares (a slightly different algorithm for the same
result); generalized least squares; and maximum
likelihood. All of these methods of extraction are
iterative and require that an initial decision be made as
to the number of factors to extract, because this number
must be fixed at this value throughout the iterations.
SPSS computes a principal components analysis with
every factor analysis and displays the eigenvalues of
the unmodified correlation matrix R. These can be
used to estimate the number of common factors. This
is done by means of a scree plot, which is a plot of
the magnitude of each of the eigenvalues against its
ordinal position in the descending series of eigenval-
ues. Connecting the dots in this plot reveals a large
first eigenvalue much higher than the rest, followed
by a number of lesser eigenvalues of still substantial
magnitude. But there is usually a point where the
rapid descent in magnitude of the eigenvalues suddenly
changes to a gradual, almost linear descent for the
remainder of the eigenvalues. Many believe that this is
in the vicinity of the point where the variables begin to
be influenced by common factors in a significant way,
and so this number is used as the number of common
factors to extract. Others retain only so many factors
as there are eigenvalues of R greater than 1.00. But
this is well known to be a weakest lowest bound for
the number of common factors. There may be more of
lesser influence.

This and subsequent versions of SPSS FACTOR do
not report a different set of eigenvalues that would
be more revealing theoretically as to the number of
common factors. Given the equation of the fundamen-
tal theorem of factor analysis above, we may substitute
R for � to represent a correlation matrix. Guttman
(1954, 1956) showed that a strong lower bound to
the number of common factors would be the number
of positive eigenvalues of the matrix R − S2 where
S2 = [diagR−1]−1. S2 is a strong upper-bound approx-
imation to Θ2. This number of positive eigenvalues,
however, is often on the order of p/2. Furthermore,
many of the eigenvalues of R − S2 are quite small,
near zero, and so many researchers would like to exam-
ine a plot of these eigenvalues to determine a point at
which the eigenvalues begin to assume substantial val-
ues. Developments by Harris (1962) that were adopted
by Jöreskog (1967) in developing an algorithm for
performing maximum likelihood factor analysis sug-
gested that one could pre- and postmultiply R− S2 by
S−1 to obtain S−1(R − S2)S−1 = S−1RS−1 − I. This
transformation does not change the number of positive
eigenvalues of the resulting matrix, so the number of
positive eigenvalues of this matrix would equal the
number of factors to retain. But each of the eigenvalues
of this matrix would correspond to an eigenvalue of the
matrix S−1RS−1 minus 1. So, any eigenvalue greater
than 1.0 of S−1RS−1 would correspond to a positive
eigenvalue of S−1RS−1 − I. Thus, researchers could
also profit from examining the eigenvalues of S−1RS−1

to determine the number of common factors to retain.
A separate calculation in this example of the

eigenvalues of S−1RS−1 revealed only 7 of the
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15 eigenvalues were greater than 1.00. These were
37.484, 14.467, 9.531, 1.436, 1.289, 1.116, and 1.065.
Although three factors would be substantial in con-
tribution, we will take one more because that was
the theoretical expectation, and those beyond it would
have a much smaller contribution (if you subtract one
from each).

Step 4: Extraction of the Unrotated
Pattern Matrix

The method of factor extraction used in this exam-
ple was maximum likelihood. It is relatively robust,
even when the variables do not have a multivariate
normal distribution, and maximizes the determinant
of the partial correlation matrix among the variables
with the common factors partialed out, regardless of
the form of the distribution. In this case, the esti-
mate of the unrotated factor pattern matrix is given
by �̂ = Θ̂Am[γi − 1]1/2

m , where Θ̂ is the square root
of the iteratively estimated diagonal unique variance
matrix, Am is the p×mmatrix whose columns are the
first m eigenvectors of Θ̂

−1RΘ̂
−1, and [γi − 1]m is a

diagonal matrix of order m whose diagonal elements
are formed by subtracting 1 from each of the first m
largest eigenvalues γi of Θ̂

−1RΘ̂
−1. In this solution,

the common factors are mutually uncorrelated. But the
unrotated factor pattern matrix is only an intermediate
solution. It defines a common factor space that contains
the maximum common variance for any m common
factors for these variables. It is not used for factor
interpretation.

Step 5: Rotation of Factors

Mathematically, the factor pattern matrix is not
unique. Given the model equation Y = �X + E, we
can find alternative factor pattern matrices and common
factors by linear transformations of them. Let T be an
m × m transformation matrix of full rank and T−1 its
matrix inverse. Then Y = �TT−1X+E = �∗X∗+E,
with �∗ = �T and X∗ = T−1X. This also has the form
of a factor analysis equation. So, which factor pattern
matrix should be our solution? L. L. Thurstone (1947)
solved this problem with the idea of simple structure.
He argued that if most of the observed variables were
not functions of all of the common factors of their
domain, then the vectors representing them in common
factor space would fall in “coordinate hyperplanes”

or subspaces of the full common factor space. Each
hyperplane or subspace would be spanned by, at most,
m− 1 of the common factors, and all variables within
those subspaces would be functions of just the common
factors spanning the hyperplane. The common factors
of the full common factor space then would be found
at the intersections of these “coordinate hyperplanes,”
because they would be among the basis vectors of
each of m − 1 hyperplanes. If the coordinate hyper-
planes could be identified by discovering subsets of the
variables occupying these subspaces of lower dimen-
sion, then the common factors would be identified at
their intersections. Furthermore, different selections of
variables from the domain would still identify the same
common factors at the intersections of the hyperplanes.
Hence, the solution for the factors is not unique to
the selection of variables from the domain and is an
objective, invariant result over almost all selections
of observed variables from the domain. To discover
these hyperplanes, Thurstone proposed using hypo-
thetical vectors called reference axes inserted into the
common factor space. A subspace of the common
factor space would be a subspace of vectors orthog-
onal to a reference axis and would be like a parasol
whose ribs represent vectors in the subspace, with
the reference axis its handle. Thus, one would move
each reference axis around in the common factor space
seeking different sets of variables to fall in the “para-
sol” orthogonal to the reference axis. These subsets
of variables would define the coordinate hyperplanes.
Originally, Thurstone used graphical, two-dimensional
plots for each pair of factors and moved his reference
axes manually in these two-dimensional spaces to dis-
cover sets of variables that would line up orthogonal to
the reference axes. This was slow work. Later, with the
advent of computers, analytic criteria for simple struc-
ture were formulated and the process of finding simple
structure solutions automated. It is important, however,
to realize that simple structure does not imply uncorre-
lated or orthogonal factors. The common factors may
be correlated. Thus, one should avoid rotational pro-
cedures such as varimax, which forces the common
factors to be mutually orthogonal, if one wants a gen-
uine simple structure solution. Good algorithms for
simple structure that are generally available are direct
Oblimin and Promax. Other algorithms claim a mod-
est superiority over these, but they are not generally
available in commercial factor analysis programs.

In our example, we rotated our four-factor solution
to simple structure using direct Oblimin rotation. The
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program produced a factor pattern matrix, a factor
structure matrix, and a matrix of correlations among the
factors. The factor pattern matrix contains weights like
regression weights for deriving the observed variables
from the common factors. The matrix is the most
useful in interpretation of the factors, because these
weights will be invariant under restriction of range
across selected subpopulations of subjects. Further-
more, the pattern weights clearly show which variables
are and are not functions of which common factors.
The factor structure matrix contains the correlations
between the observed variables and the common fac-
tors. It is itself the matrix product �� of the factor
pattern and factor correlation matrices. So, once these
two are obtained, the factor structure matrix is redun-
dant. Furthermore, the factor structure matrix and the
matrix of correlations among factors are not invariant
under restriction of range or selection of subjects.

Step 6: Factor Interpretation

The method of factor interpretation is eliminative
induction. One looks down each column of the factor
pattern matrix for those variables having large “load-
ings” on the factor. One interprets the factor as that
hypothetical variable that is common to those variables
with large loadings but absent in variables with near-
zero loadings. In Table 3, we find something like
positive orientation to others or “kindness” to be what is
common to those variables having high loadings on the
first factor. Ability seems to be the common element for
the second factor, whereas extraversion is the common

Table 3 Factor Pattern Loadings

Table 4 Correlation Between Common Factors

element for the third. The fourth factor indeed is some-
thing common to just helpful and cooperative, and
these variables also have modest loadings as expected
on kindness and ability. The correlations among fac-
tors in Table 4 suggest that kindness and extraversion
share something in common and less with ability. In
some cases, factor analysts will factor analyze the
correlations among the factors to obtain second-order
common and unique factors.

—Stanley A. Mulaik

REFERENCES
Carlson, M., & Mulaik, S. A. (1993). Trait ratings from descrip-

tions of behavior as mediated by components of meaning.
Multivariate Behavioral Research, 28, 111–159.

Guttman, L. (1953). Image theory for the structure of quantita-
tive variates. Psychometrika, 18, 277–296.

Guttman, L. (1954). Some necessary conditions for common-
factor analysis. Psychometrika, 19, 149–161.

Guttman, L. (1956). “Best possible” systematic estimates of
communalities. Psychometrika, 21, 273–285.

Harris, C. W. (1962). Some Rao-Guttman relationships. Psy-
chometrika, 27, 247–263.

Hotelling, H. (1933). Analysis of a complex of statistical
variables into principal components. Journal of Educational
Psychology, 24, 417–441, 498–520.

Joliffe, I. T. (1986). Principal component analysis. New York:
Springer-Verlag.

Jones, M. B. (1959). Simplex theory (U.S. Naval School of
Aviation Medicine Monograph Series No. 3). Pensacola,
FL: U.S. Naval School of Aviation Medicine.
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FACTORIAL DESIGN

A factorial design involves the simultaneous study
of two or more variables or factors on some other
variable or variables. The factors may be manipulated
or measured. Each factor consists of two or more levels
or categories. The levels may differ qualitatively or
quantitatively. For example, the qualitative factor of
marital status may consist of the five levels of never
married, married, separated, divorced, and widowed.
Quantitative factors may comprise particular values
(such as increasing dosages of a drug) or a range of
values (such as the four age groups of 20–29, 30–39,
40–49 and 50–59).

A factorial design may be further described in terms
of the number of factors, the number of factors and
levels within each factor, whether cases have been ran-
domized to factors or treatments, and whether cases
are measured on more than one occasion. Factors
may be referred to as “ways,” so that a two-factor
design may be called a two-way design, a three-factor
design a three-way design, and so on. Alternatively,
the design may be described in terms of the number of
levels within each factor. A design that consists of three
factors, two having two levels and the third having four
levels, may be designated a 2 × 2 × 4 (“a two by two
by four”) factorial design. A completely randomized
factorial design is where each case has been randomly
assigned to one and only one combination of factor
levels or cells. A mixed factorial design comprises at
least one factor where cases are measured on more than
one occasion and one factor where cases are measured
on only one occasion.

Ronald Fisher (1935) suggested that the factorial
design had three advantages over the single-factor
design. The first advantage is that it is more effi-
cient or economical in that it requires fewer cases
or observations for the same degree of precision or
power. Compared with a single-factor design, a two-
factor or two-way factorial design requires half as many
cases, a three-way design a third as many cases, a
four-way design a quarter as many cases, and so on
(Snedecor, 1937). The reason for this is that the values

of one factor are averaged across the values of the
other factors. The second advantage is that it is more
comprehensive in that it allows the interaction between
two or more factors to be examined. The third advan-
tage is that it enables greater generalizability of the
results in that a factor has been investigated over a
wider range of conditions. A fourth advantage is that
it may provide a more sensitive or powerful test of
a factor if that factor does not interact substantially
with one or more factors in that the other factors may
account for some of the unexplained or error variance
(Stevens, 2001).

—Duncan Cramer

See also Experiment
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FACTORIAL SURVEY METHOD
(ROSSI′S METHOD)

Humans form ideas about the way the world works.
They also form ideas about the way the world ought to
work. These positive and normative ideas can be rep-
resented by equations, termed, respectively, positive-
belief equations and normative-judgment equations.
Rossi’s factorial survey method makes it possible to
estimate these equations-inside-the-head.

The positive-belief and normative-judgment equa-
tions are linked to two further equations—an equation
describing the determinants of components of the
beliefs or judgments, called a determinants equa-
tion, and an equation describing consequences of the
belief/judgment components, called a consequences
equation.

For example, individuals form ideas about earnings
determination and, concomitantly, about the earn-
ings they regard as just for themselves and others.
Both the ideas about actual earnings determination
and about just earnings determination are themselves
the product of personal and social factors, such
as information about the occupational structure and


