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Multiple Regression

Ken Kelley and Scott E. Maxwell

Multiple regression has been described as a general data analytic system (e.g., Cohen, 1968),  
primarily because many commonly used statistical models can be regarded as its special cases 
(e.g., single-sample t-test, two-independent samples t-test, one-way analysis of variance), the inde-
pendent variables can be categorical (e.g., groups) or quantitative (e.g., level of treatment), and 
the model can be used for observational or experimental studies. Furthermore, many advanced 
models have multiple regression as a special case (e.g., path analysis, structural equation mod-
eling, multilevel models, analysis of covariance). The ubiquity of multiple regression makes this 
model one of the most important and widely used statistical methods in social science research. 
In general, the idea of the multiple regression model is to relate a set of regressor (independent or 
predictor) variables to a criterion (dependent or outcome) variable, for purposes of explanation  
and/or prediction, with an equation linear in its parameters. More formally, the population  
multiple regression model is given as

Yi i= β β β ε0 1 1+ + + +X Xi K Ki
, (1)

where β0  is the population intercept, βk is the population regression coefficient for the kth regres-
sor (k = 1, . . ., K), Xki  is the kth regressor for the ith individual (i = 1, . . . , N), and is the error for 
the ith individual, generally assumed to be normally distributed with mean 0 and population vari-
ance σε

2 . The intercept is the model-implied expected value of Y when each of the K X variables 
are at values of zero. The intercept may have a meaningful substantive interpretation, such as when 
the regressor variables are centered around 0 so that the intercept represents the grand mean on 
the outcome or when the regressor variables are dummy variables and the intercept thus represents 
the expected value of the outcome for the referent group, otherwise it serves as a scalar so that the 
sum of the squared errors can be minimized. For contemporary treatments of multiple regression 
applied to a wide variety of examples, we recommend Cohen, Cohen, West, and Aiken (2003), 
Pedhazur (1997), Harrell (2001), Fox (2008), Rencher and Schaalje (2008), Gelman and Hill (2007), 
and Muller and Fetterman (2002). Specific desiderata for applied studies that utilize multiple regres-
sion are presented in Table 23.1 and explicated subsequently.
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1. Research Goals

Standard textbook treatments of multiple regression often emphasize that multiple regression can 
be used for prediction or explanation. Depending on the goals of the researcher, prediction, expla-
nation, or both might be desired. Although the multiple regression model itself is exactly the same 
in both cases (i.e., Equation (1) does not change based on the goal), the distinction is nevertheless 
important because different statistical considerations arise for the two purposes. To clearly commu-
nicate the purpose of the study, it is important for authors to be clear about whether their purpose 
in using multiple regression is prediction, explanation, or both.

The ultimate goal of explanation is to identify the causes of the outcome variable Y. Under ideal 
conditions, multiple regression can identify causal effects by assessing the value of regression coef-
ficients: when the coefficients are non-zero in the population causality may be a possibility. To 
understand how a regression coefficient can potentially reflect a causal effect, we need to say what a 
regression coefficient represents. For example, when the model is correctly specified, the coefficient 
βk for Xk reflects the linear relation between Y and Xk at a fixed value of all other regressors included 
in the model. In this sense the regression coefficient for Xk is a measure of the extent to which Xk 
and Y are linearly related when all other regressors in the model are held constant. Because the 
other regressors are held constant, any association between Xk and Y cannot be attributed to the 
other regressors. Thus, it is tempting to conclude that βk reflects the extent to which Xk causes Y, in 
which case we have at least partly succeeded in explaining variation in Y. In fact, this reasoning is 
sometimes correct, but only under a set of restrictive conditions (temporal precedence, relationship, 

Table 23.1 Desiderata for Multiple Regression.

Desideratum Manuscript Section

 1. The goals of the research and how multiple regression (MR) can be useful are explicitly 
addressed.

I

 2. The inclusion of each of the independent variables, whether confirmatory or exploratory 
in nature, should be justified on theoretical and/or practical grounds.

I

 3. Each criterion and regressor variable should be described in detail (e.g., scales of 
measurement, coding scheme, reliability) to convey how the MR model should be interpreted.

M

 4. Specific procedures for the computation and interpretation of effect sizes are delineated. M
 5. Assumptions underlying the MR analyses and resulting inference are explicitly addressed. M
 6. Variable selection techniques are justified. M
 7. Sample sizes for all analyses are justified in terms of power, accuracy, and reproducibility 

of results.
M

 8. Methods of dealing with missing data are addressed. M
 9. For models examining moderation, issues of interpretation, role of centering, and 

visualization are addressed.
R

10. For models examining mediation, issues of interpretation and limitations due to cross 
sectional designs are addressed.

R

11. Visual examination of data is addressed in order to assess model appropriateness and 
assumptions.

R

12. Measurement error in predictor and/or outcome variables is addressed. D
13. Potential limitations of multiple regression in the current applied research context are 

explicitly stated.
D

14. Alternatives to the MR model are given. D

*  I = Introduction, M = Methods, R = Results, D = Discussion.
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and nonspuriousness; see, e.g., Kenny, 1979). Unfortunately, it can often be difficult to justify these 
conditions unequivocally except in randomized experiments.

Predicting the value of a criterion variable given one or more regressors is another reason why 
multiple regression is commonly used, especially in applied research. For example, a researcher 
might use multiple regression to predict how well pre-kindergarten children will be able to read at 
the end of first grade. The researcher would use historical data (often called training data) contain-
ing scores on reading at the end of first grade as well as scores on a number of possible regressors. 
Multiple regression could then be used to create a model in which the value of the criterion is pre-
dicted based on one or more of the regressors. A benefit of prediction is that the parameter estimates 
(i.e., the regression coefficients) obtained from the training data can be used to predict the value of 
an unknown (or yet to occur) criterion variable Y based on the complete set of regressors used in the 
training data. There are many cases in which it is desirable to predict a criterion variable when it is as 
yet unknown (e.g., college grade point average or reading ability at the end of first grade) from a set 
of known regressors (e.g., SAT scores or pre-kindergarten measures of cognitive functioning). The 
ultimate goal is often selection, as in the college example, but can also be identifying at-risk individu-
als who might benefit from a relevant intervention.

Although we believe that recognizing the difference between explanation and prediction is criti-
cally important when considering the parameters of interest in the model, there need not be such a 
rigid dichotomy between the two goals. In studies seeking to explain relations there can be predic-
tion, and in studies that seek a way to predict there can be attempts at explanation. Pedhazur (1997, 
p. 196) described predictive research having as its main emphasis “practical applications,” whereas 
in explanatory research the main emphasis is “understanding phenomena.” Huberty (2003) pro-
vided a discussion of the similarities and differences in research goals and reporting strategies when 
interest is primarily in prediction or explanation.

Statistical inference is important when a desire exists to generalize information obtained in a 
sample to the population from which the sample was drawn. Inference can be of two forms, con-
fidence interval formation for the population effect sizes of interest and/or hypothesis testing for 
effect sizes. For purely predictive purposes, inferential procedures are not strictly necessary, but 
nevertheless provide information about the population of interest.

2. Justification of Regressors

Multiple regression can be applied along a continuum of research approaches anchored by confirm-
atory and exploratory research. The confirmatory anchor seems to best correspond to a well-defined 
research question with a few theoretically justified variables, whereas the exploratory anchor cor-
responds to a diffuse research question with many variables included in one or more different 
analyses, not necessarily with explicit theoretical justification. Both confirmatory and exploratory 
analyses are beneficial, but care must be taken so that an exploratory analysis is not presented as if 
it were a confirmatory analysis. Provided the assumptions of the model are satisfied in the context 
of confirmatory studies, the probability values (i.e., the p-values) from null hypothesis significance 
testing and confidence interval coverages associated with the different effect sizes are meaningful. 
However, because exploratory analyses generally consist of systematic testing and retesting until 
settling on a model that is satisfactory enough, the process of testing and then retesting renders the 
probability values and confidence interval coverages associated with the effect sizes as approximate 
at best, and completely inappropriate at worst. For example, testing many models with the aim of 
obtaining p-values for coefficients of interest less than, say, .05, leads to p-values that are too heav-
ily based on the characteristics of the sample rather than a test of a well-specified question. Testing 
null hypotheses of different models on the same data set will result in capitalization on chance and 
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more Type I errors will be realized than the Type I error rate specified by the researcher (e.g., .05). 
That is to say, when exploratory analyses are treated as if there were confirmatory, properties of 
the p-values will not be the same as if the analysis was truly confirmatory. Nevertheless, findings 
from such exploratory studies often provide a useful starting point for future confirmatory research 
but it needs to be clear to the reader how the analysis was conducted and what other analyses were 
attempted. Readers, such as reviewers, are rightly skeptical of drawing important conclusions from 
studies in which many models were evaluated and only the significant findings presented.

More formally, the reason probability values and confidence interval coverages are not correct in 
exploratory analyses in which multiple models are evaluated is because of what is known as the mul-
tiplicity problem. The multiplicity problem describes the problem of multiple statistical tests being 
performed, where the effect sizes with small p-values are selected for inclusion in the presented sta-
tistical model. An implication of the multiplicity problem is that the obtained p-values are suspect, 
due to the sheer number of null hypothesis significance tests conducted. When many null hypothesis 
significance tests are conducted, even when all the null hypotheses are true, there is a high probability 
of finding some small p-values by chance. Thus, because of the suspect p-values and the associated 
confidence interval coverages associated with statistical inference in exploratory studies, it should 
be made clear if the study was confirmatory in nature or exploratory. In particular, exploratory 
approaches sometimes effectively are based on an informal variation of a formal variable selection 
method (such as stepwise regression, to be discussed in Desideratum 6), which may be fine for predic-
tion but raises serious concerns about the meaningfulness of any claims regarding explanation. That 
is, some researchers reject the idea of stepwise regression, but themselves perform a more intuitive 
version of stepwise regression where many models are fitted, even when their purpose is explanation.

3. Descriptions of Criterion and Regressor Variables

A statistical model in and of itself is not very useful unless the variables in the model are understood 
in their appropriate context and have been discussed in enough detail to convey an understanding 
of the information they contribute to the research question. At a minimum, means and the covari-
ance matrix or the correlation matrix (with accompanying standard deviations) should be provided 
for all variables used in the analysis. Furthermore, the type of variable (e.g., categorical or continu-
ous) and the range over which values of the scale can vary (i.e., the limits of the scale) should be 
discussed. When categorical variables (e.g., grouping variables) are used, the coding scheme should 
be explicitly discussed. Without an explanation of the coding scheme, the estimated model param-
eters cannot be readily interpreted by others (e.g., for the “Sex” variable females are coded as 0 and 
males 1, females as 1 and males 0, or females −1 and males 1, etc.). Continuous variables should 
almost never be dichotomized (or polytomized more generally) but should instead be left in their 
continuous form in order to preserve as much information in the variable as possible. Examples of 
situations where it may sometimes be reasonable to polytomize continuous variables is when there 
are clear types or taxa of individuals or when the distribution of a count variable is highly skewed 
(MacCallum, Zhang, Preacher, & Rucker, 2002). It is clear, however, that median splits, a commonly 
used procedure for dichotomizing continuous data, is essentially never statistically justified. Where 
appropriate, the reliability and validity evidence for each of the variables should be provided (see 
Desideratum 12); more information is available in Chapter 29 of this volume.

4. Effect Sizes

As has been discussed a great deal in the methodological literature, effect sizes and their corre-
sponding confidence intervals are widely recommended and should almost always be reported (e.g., 
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Wilkinson & APA Task Force on Task Force on Statistical Inference, 1999; see also Chapter 6, this 
volume). In multiple regression, like many other statistical models, there are two types of effect 
sizes: omnibus and targeted.

The most widely used omnibus effect size in multiple regression, and one of the most common in 
social science research in general, is the squared multiple correlation coefficient, whose population 
value is denoted Ρ2 (rho squared). The value of Ρ2 quantifies the proportion of variance in Y that 
can be accounted for by the K regressor variables. The typical estimate of Ρ2, R2, is positively biased. 
Although confidence intervals and significance tests for Ρ2 are based on R2, the adjusted value of R2, 
denoted RA

2 , should also be reported and used as the best estimate of Ρ2. The typical adjusted esti-
mate (e.g., Cohen et al., 2003; Harrell, 2001) is given as

R R N
N KA

2 20 1 1 1
1

= − −
−

− −





























max , ( ) , (2)

where max{.,.} implies that the larger of the two values is taken. Most statistical programs will give 
both R2 and RA

2 .
Darlington (1968) explained that the adjustment shown in Equation (2) (developed by Ezekiel, 

1930) will tend to overestimate the population validity of the sample regression equation. The idea 
here is that the adjustment estimates the population validity of the population regression equa-
tion. In other words, if the population regression coefficients were known, what proportion of the 
variance in Y would this equation explain in the population? This makes sense when the goal is 
explanation, because one purpose here is to estimate the extent to which the regressors explain the 
variance in Y. However, this makes less sense when the goal is prediction, because in this context 
the sample regression equation derived in the training sample will be used to make predictions in a 
new sample. The key point is that the regression coefficients to be used for prediction are the values 
obtained in the training sample. However, these values will not be exactly the same as the optimal 
population values, thus lowering the resultant R2 to some extent. For this reason, in the context of 
prediction, the population parameter of most interest is sometimes referred to as the population 
cross-validity, ΡC, or the squared population cross-validity, ρc

2 . Raju, Bilgic, Edwards, and Fleer 
(1999) described a variety of estimators of the population cross-validity and recommended an adjust-
ment developed by Burket (1964):

R NR K
R N KC =

−
−

2

( )
. (3)

Although these omnibus effect size estimates are beneficial, an observed effect size is simply a 
point estimate that might differ considerably from the population value it estimates. Confidence 
intervals should be reported for any estimate that is itself deemed important enough to report. 
Confidence intervals for Ρ2 are not straightforward to construct and the appropriate confidence 
interval depends on whether or not regressors are regarded as fixed or random. Steiger (2004; see 
also Steiger & Fouladi, 1992), Algina and Olejnik (2000), and Kelley (2007), discussed methods of 
confidence interval construction and provided software solutions to implement such intervals.

Researchers should consider the squared semi-partial correlation coefficient, which is a targeted 
effect that describes the change in R2 when the kth regressor is added to the multiple regression 
model that already contains the other K − 1 regressors. Thus, the squared semi-partial correlation 
coefficient quantifies the proportion of variance of Y that is accounted for uniquely by a particular 
regressor in a model with other regressors. Such an effect size is useful when conveying the con-
tribution of a regressor in a model with K − 1 other regressors. Squared semi-partial correlation 
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coefficients can also be used to quantify the proportion of variance of Y that is accounted for by a 
particular set of regressors instead of just a single regressor.

Regression coefficients come in two forms: unstandardized and standardized, both of which 
represent targeted effects, which may or may not be causal in nature. Unstandardized regres-
sion coefficients can be transformed into standardized regression coefficients by multiplying the 
unstandardized regression coefficient by the quantity 

s
s
X

Y

k , which removes the scale of Xk and Y, 
where s⋅  denotes the standard deviation of the subscripted quantity. The process can be reversed 
(i.e., set a standardized regression coefficient on the unstandardized scale) by multiplying a stand-
ardized regression coefficient by s

s
Y

Xk

. In general, either unstandardized or both unstandardized 

and standardized regression coefficients should be given, along with their corresponding confi-
dence intervals. The kth regression coefficient quantifies the degree of linear relation between Y 
and Xk, while holding constant the remaining K − 1 regressors. Standardized regression coefficients 
are often an effective way of describing the effect of a regressor on the criterion variable when the 
scales of the measurements are not inherently meaningful. When standardized solutions are used in 
place of or in addition to their unstandardized counterparts, the measure of association is in terms 
of standard deviation units of the particular sample. For example, a standardized regression coef-
ficient of .25 for Xk in a standardized solution implies that a 1 standard deviation unit difference in 
Xk is associated with a .25 standard deviation difference in Y in the same direction, holding constant 
all other regressors.

Confidence intervals for unstandardized regression coefficients are easy to obtain and formulas 
are available in essentially all modern regression books and can also be obtained with popular sta-
tistical software. However, confidence intervals for standardized regression coefficients require the 
use of noncentral t distributions and are more difficult to obtain (e.g., see Kelley & Maxwell, 2008, 
or Kelley, 2007, for a review and software solutions). In general, standardized regression coefficients 
are provided when there is a desire to remove the scaling of the measurement instrument so that 
each variable (regressors and criterion) has a mean of 0 and a standard deviation of 1. Standardized 
regression coefficients allow for relations to be framed in standard deviation units (as previously 
noted) and regression coefficients to be more directly comparable within an equation. That being 
said, there is no guarantee that the regressor with the largest regression coefficient is the “most 
important” independent variable in the equation (even when all variables are standardized). The 
meaning of “most important” might be different depending on the particular situation and goals of 
the study (Azen & Budescu, 2003).

5. Addressing Assumptions

Standard approaches to regression rely on ordinary least squares (OLS) to estimate model parame-
ters. The OLS regression coefficients in multiple regression minimize the sum of squared deviations 
between the model implied scores, denoted Yi  for the ith individual, and the observed scores (i.e., 

regression coefficients are chosen that minimize ( )Y Yi i
i

N

−
=
∑ 

2

1

). Estimation of the regression coef-

ficients themselves does do not strictly require any parametric assumptions. However, inference for 
the regression coefficients in the usual ways (hypothesis testing and confidence interval formation) 
does depend on validity of underlying assumptions. In particular, p-values and confidence inter-
vals (i.e., inference) for regression coefficients from the regression model as specified in Equation  
(1) depend on four statistical assumptions: (a) errors (i.e., e Y Yi i i= −  ) follow a normal distribution;  
(b) error variance is homogeneous across all values of the regressors (homoscedasticity); (c) the 
entities (e.g., persons) from which observations are taken are independent of one another; and  
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(d) the relation between Y and the K regressors is linear. It is important to note that no distributional 
assumptions are made about the regressors, meaning that, for example, skewness in a predictor is 
not by itself a problem. Also, the model does not assume that regressors are measured without 
error, but as we will discuss later, results obtained using regressors measured with error may differ 
substantially from results obtained when regressors are measured perfectly, so measurement error 
in the regressors often becomes an important consideration.

Although the linearity assumption (assumption d above) is fundamental, it is often overlooked 
in discussions and applications of multiple regression. We agree with Gelman and Hill (2007, p. 
46) that, “The most important mathematical assumption of the regression model is that its deter-
ministic component is a linear function of the separate predictors.” This assumption is especially 
important because if this assumption is not valid, then the regression coefficients in the model do 
not accurately reflect the relation between Y and Xk at a fixed value of the other regressors. As a 
result, the regression model might fail to hold the other regressors constant in attempting to esti-
mate the relation between Y and a specific X variable. If linearity does not hold, then the model 
as specified in Equation (1) may not be appropriate for inferences, as Equation (1) is necessarily 
linear in form. When linearity does not hold, there are essentially three strategies: (a) transform 
one or more variables (one or more Xk and/or Y) so that linearity in an additive model is a good 
approximation (e.g., Xk  or Xk

2 ), (b) include an additional theoretically justified variable (e.g., 
Xk

2  in addition to Xk) that correlates with the outcome variable, in an attempt to explain some of the 
unaccounted for variability, and/or (c) fit a nonlinear regression model (e.g., a negative exponential, 
Gompertz, logistic) instead of the traditional linear multiple regression model (Seber & Wild, 1989).

6. Variable Selection Techniques Are Formally Justified

In many situations, more regressor variables are initially included in a model than are ultimately 
desirable in the final model to be presented for interpretation. The way in which the researcher 
arrives at the final model should be made explicit. There are four common ways of selecting variables 
to be included in the analysis: (a) all analyses are theory driven, (b) model comparisons are per-
formed, (c) stepwise methods are used, or (d) a variety of exploratory models and methods are fitted.

In many ways, the ideal variable selection method is entirely theory driven and the regressors 
included are based on a priori theoretical arguments and/or previous literature. This method is ideal 
because a one-to-one mapping exists between the targeted nature of the research question and the 
targeted statistical analyses.

A model comparison approach (e.g., Maxwell, Delaney, & Kelley, 2018), in which the inclusion of 
one or more variables is evaluated against a more basic model, is often the most straightforward way 
to evaluate competing nested models (on the same set of data). The idea of the model comparison 
approach is to statistically compare nested models, where the models are compared most commonly 
in terms of Rk

2  and RK M+
2 , where Rk

2  is the model based on the K regressors and Rk
2  is based on a 

richer model with an additional M regressors.
A special type of model comparison is implemented through what is often termed hierarchical 

regression (not to be confused with hierarchical linear modeling, HLM; see Chapter 22, this volume). 
In hierarchical regression, not only are the variables selected by the researcher, so too is the order in 
which they enter the model. At each step of the procedure, the variables previously included remain 
in the analysis. When hierarchical regressions are performed, a series of fitted models should be 
provided as part of the reported results that shows the estimated model improvement when com-
paring the richer models to the simpler models. The improvement is generally gauged in terms of 
the change in R2 when a single regressor variable is added, which again is the squared semipartial 
correlation coefficient. It is also common to add a block of regressors in a hierarchical fashion.  



320 • Ken Kelley and Scott E. Maxwell

In such situations the change in R2 is still of interest, but there the additional variability accounted 
for is due to the block of regressors. For example, a researcher might add a block of control variables 
before adding one or more primary variables of interest.

When a large number of possible regressors exist, possibly for more than one criterion variable, 
data driven selection methods are sometimes used. Whenever data driven selection methods are 
used, a clear indication should be made that the study is not attempting to explain phenomena in 
a confirmatory fashion, but rather that the study is exploratory in nature. The type of data driven 
selection procedure performed (e.g., forward selection, backward elimination, all possible subsets), 
and the selection criteria (e.g., a statistically significant change in R2, or a change in R2 of some 
specified magnitude, say .05) should be given. Also the particular computer program/package and 
its version should be provided, because different programs/packages and versions implement data 
driven selection procedures in different ways.

There are many methodological issues that can arise when implementing a data driven selec-
tion procedure. As Rencher and Pun (1980) illustrated, values of R2 can be highly inflated and thus 
the obtained probability values can differ substantially from those reported as output in statistical 
software. When a large number of possible regressors exist in the context of a data driven selection 
procedure, a model that accounts for a statistically significant proportion of variance in Y can often 
be obtained even if the null hypothesis is true that all of the regression coefficients, less the intercept, 
are zero. Because of the multiplicity issue, as previously noted, fitting more than a single model can 
inflate the Type I error rate due to capitalization on chance.

Vittinghoff, Glidden, Shiboski, and McCulloch (2005) provided an especially interesting per-
spective on model building by distinguishing three different purposes for selecting predictors:  
(1) evaluating a regressor of primary interest in the context of other possibly relevant regressors,  
(2) identifying the important regressors of an outcome, and (3) prediction. They emphasized that 
issues involved in predictor selection differ according to the purpose of the analysis. For example, 
suppose that two regressors X1 and X2 are highly correlated with one another. When the goal is pre-
diction, it will generally be desirable to include only one of these two regressors in the model, and 
it may make little difference in the accuracy of prediction which of the two is included. Ironically, 
however, including both of the regressors will often worsen prediction because any gain in bias 
reduction is more than offset by an increase in the variance of predicted values. On the other 
hand, suppose the goal is to explain the relation between X1 and Y. Should X2 be controlled for 
and thus included in the model? We agree with Vittinghoff et al. (2005) that this question cannot 
be answered simply from knowing that X1 and X2 are highly correlated. Instead, for explanatory 
models it becomes necessary to consider a theoretical causal model for how the various regressors 
and Y relate to one another. In particular, X2 should be included in the model if it is a confounder, 
but not all variables highly correlated with the regressor of primary interest (i.e., X1) are necessarily 
confounders. Vittinghoff et al. (2005), Jaccard, Guilamo-Ramos, Johansson, and Bouris (2006), and 
Hernan, Hernandez-Diaz, Werler, and Mitchell (2002) discussed various approaches for identifying 
whether a variable is a confounder and thus should be included in the regression model.

7. Sample Sizes Are Justified

Sample size is an important component to any research study. “Rules of thumb” that were once 
widely recommended for planning sample size are not generally appropriate and should not be used 
as justification (see Green, 1991, for a review). Instead, researchers should justify their sample size. 
A common approach to sample size planning is the power analytic perspective. However, another 
perspective is accuracy in parameter estimation (AIPE). The goal of the power analytic approach 
is to plan sample size so that a false null hypothesis can be rejected with some desired probability 
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(i.e., power), whereas the goal of the AIPE approach is to obtain an accurate estimate of the popula-
tion value, which is operationalized by a sufficiently narrow confidence interval with some desired 
degree of assurance (i.e., probability). In addition to deciding on whether power or AIPE is most 
appropriate, researchers also need to state whether the primary interest is in an omnibus effect 
(i.e., the squared multiple correlation coefficient) or one or more targeted effects (i.e., regression 
coefficients), which is necessarily based on the question(s) of interest. In particular, questions of 
prediction are more likely to involve omnibus effects, whereas questions of explanation are more 
likely to involve targeted effects. Additional details are provided in Kelley and Maxwell (2008), who 
discussed sample size planning methods in a multiple regression context in a 2 × 2 (power or AIPE ×  
omnibus or targeted effect) framework.

In some cases, existing/archival data become available to a researcher. Because the data have 
already been collected, sample size planning cannot be done as previously discussed, as it is imple-
mented a priori in the design phase of the study. In general, power and AIPE are not often discussed 
for existing/archival data. However, power and AIPE can still be addressed, albeit in a different 
manner. In particular, for a specified value of an effect size at the size of the sample in the existing 
data, power and expected confidence interval width can be given. An appropriate value for the effect 
size to use is what can be termed the parameter of minimal importance (POMI) or the minimum 
parameter value of interest (MPVI), both of which represent the smallest magnitude that is deemed 
to have scientific, clinical managerial, or practical importance/interest in the particular context.

8. Missing Data

Missing data is a perplexing issue. There are three broad categories of missingness: (a) missing com-
pletely at random (MCAR), (b) missing at random (MAR), and (c) missing not at random (MNAR). 
MCAR is when missingness does not depend on either observed or missing values, whereas MAR 
is when missingness does not depend on the missing values but may depend on observed values. 
MNAR implies that missingness depends on an outside variable not in the model or depends on 
the value of the variable itself (see Little & Rubin, 2002, for a types of missing data and appropriate 
methods for dealing with the different types of missing data).

Although the specifics of the situation will differ, researchers should do their best to ensure the 
amount of missing data is minimized (e.g., remind participants about follow-up visits, check evalu-
ations for blank responses before the participants leave, clearly state that sensitive data will remain 
confidential if appropriate). Generally, whenever missing data arises in a research study, it opens 
the possibility for criticism in the way it was (or was not) dealt with. Whenever there is a nontrivial 
amount of missingness, the data should be interrogated for patterns of missingness (Harrell, 2001). 
When apparent patterns are found, they should be reported and, if possible, a plausible explanation 
provided with a cautionary reminder given that exploratory methods were used to uncover any 
apparent patterns in the data. Regardless of the way in which missing data is dealt with, the method 
and the rationale for choosing the method should be discussed. That being said, some methods, in 
particular mean substitution and/or pairwise deletion, should not be used unless there is a good 
reason to do so with a clear explanation of why. We will briefly discuss three methods of dealing 
with missing data (see Schafer & Graham, 2002, for a thorough review).

When missing data does occur, casewise deletion appears to be frequently employed in the applied 
literature; however, casewise deletion can be problematic. In multiple regression, casewise deletion 
and listwise deletion are equivalent, however, in other models the two terms differ. Casewise dele-
tion is when a participant is completely excluded, regardless of the amount of data available for the 
participant, if any data are missing for the analysis of a particular model. Listwise deletion is when 
an entire row is removed when there is any missing data. Thus, for models in which each case has 
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only one row in a data set, casewise and listwise deletion are equivalent. However, for some models 
a single case (e.g., person) will have multiple rows for different measurement occasions. There, such 
as in multilevel models, the row but not the case itself is deleted. Casewise (or listwise) deletion 
generally yields unbiased estimates only under the very strong assumption that data are MCAR. At 
best, estimates obtained using casewise deletion are inefficient, implying less statistical power and 
estimation accuracy than would otherwise be the case. The reason casewise deletion is inefficient 
is because the sample size is reduced to only those with complete data sets, which tends to increase 
the sample standard error(s) and necessarily does so in the population. More important, however, is 
that estimates obtained using casewise deletion will often be biased, unless plausible arguments can 
be advanced for why missingness is likely to be MCAR.

Imputation or multiple imputation provides a reasonable way to deal with missing data in many 
situations. Imputation is when a plausible value is substituted for a missing value and multiple 
imputation is when this process is performed multiple times. The “plausible values” come from an 
imputation model that uses other data that are available to estimate the data that are not available. 
At first the idea of estimating data might seem problematic, but it is often better to estimate what is 
usually a small amount of data than to disregard valuable data with deletion (e.g., casewise) strate-
gies (Harrell, 2001, §3.4).

Full information maximum likelihood (FIML) and restricted maximum likelihood (REML) 
estimation are the most popular methods for dealing with missing data in multilevel models and 
structural equation models, likely because main-stream multilevel model and structural equation 
modeling programs can easily implement them (and usually do so by default). These maximum 
likelihood methods for dealing with missing data assume that data are MCAR or MAR. Because 
FIML does not consider the degrees of freedom and uses the standard normal distribution instead 
of the t-distribution, sample size should not be small with this approach. Small sample sizes being 
used with the FIML approach to missing data will tend to yield differences in the empirical and 
nominal Type I error rates. REML, however, does consider the issue of degrees of freedom and is 
more appropriate in smaller samples. Another issue is that maximum likelihood estimation assumes 
multivariate normality, which might not always be reasonable (recall that the standard multiple 
regression assumption is only that the errors are normally distributed). Enders (2001) provided a 
review and evaluation of maximum likelihood estimation when missing data exists in the context of 
multiple regression. Our recommendation is to use either multiple imputation or maximum likeli-
hood estimation when faced with missing data.

9. Models Examining Moderation

The regression model shown in Equation (1) assumes that the effects of each Xk on Y are additive. 
For example, with two regressors, this model assumes that the relation between X1 and Y is the same 
for every value of X2 and similarly the relation between X2 and Y is the same for every value of X1. In 
reality, however, the strength of the relation (or even the direction of the relation) between X1 and Y 
might depend on X2, in which case X1 and X2 are said to interact. As a consequence, the regression 
model shown in Equation (1) might seem very restrictive, because it does not seem to allow for the 
possibility of an interaction between X1 and X2. Fortunately, this restriction is illusory, because modi-
fications to the model allow X1 and X2 to interact. The ability to modify this model is critical because 
many theories in the social and behavioral sciences stipulate that the relation between a pair of values 
(e.g., Y and X1) depends on a third variable (e.g., X2), which corresponds to an interaction effect.

The standard way of modifying the model in Equation (1) so as to allow for the possibility of an 
interaction (or equivalently, a moderator) is to add cross-product terms. For example, with two 
regressors, the model becomes
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Y X X X Xi i i i i i= + + + +β β β β ε0 1 1 2 2 3 1 2  (4)

The inclusion of the product term allows the relation between either X and Y to depend on the value 
of the other X. In particular, this model stipulates that the slope relating X1 to Y is given by

dY
dX

X
1

1 3 2= +β β , (5)

where dY/dX1 is the derivative (instantaneous slope) of Y with respect to X1. If β3 is non-zero, the 
relation between X1 and Y depends on X2, so X2 moderates the effect of X1 on Y, or equivalently, X1 
and X2 interact. However, many researchers might not realize that the product term represents a 
very specific type of interaction, namely a bilinear effect. In particular, Equation (5) shows that if 
β3 is positive, the slope becomes increasingly higher for larger values of X2. Similarly, if β3 is nega-
tive, the slope becomes increasingly lower for larger values of X2. Thus, researchers should consider 
whether this is the type of interaction they truly desire to detect. If not, more complicated models 
can be constructed, such as including quadratic terms for some or all regressors. Interested readers 
can consult Cohen et al. (2003) for additional details.

The best way to begin to interpret effects in moderator models is generally to plot the interaction. 
For example, suppose the primary interest involves the extent to which X2 moderates the relation 
between X1 and Y. Cohen et al. (2003) recommended plotting regression lines relating Y and X1 at 
three values of X2 (typically at the mean of X2 and also at scores one standard deviation below the 
mean and one standard deviation above the mean). We recommend that such a plot be included in 
a published work involving moderator effects. Alternatively, what can be helpful is a three-dimen-
sional representation of the relations, where Y is plotted as a function of all possible scores on X1 
and X2 within an appropriate range.

A point of some confusion historically has been how to interpret the β1 and β2 coefficients in the 
model in Equation (4). Some researchers have interpreted these coefficients as if they corresponded 
to main effects, but this is not generally true. Instead, they are conditional (i.e., simple) effects. For 
example, Equation (5) shows that β1 is the slope of Y on X1 when X2 equals 0. Unless the range of 
values of X2 happens to include 0, the conditional effect in the interaction model will be meaning-
less. For this reason, it is often recommended that X1 and X2 be recoded so that a value of 0 takes on 
a meaningful interpretation. Most commonly, both variables are centered by subtracting the sample 
mean from all scores (mean-centering), yielding a new coding with a mean of 0. One could subtract 
a theoretically meaningful value from the scores. In any event, it is critical that authors explain how 
regressors in interaction models have been coded, in order to facilitate interpretation of the corre-
sponding regression coefficients.

Because of perceived complications of interpreting interactions between continuous regressors, 
some researchers decide to simplify analyses by categorizing either or both regressors. We strongly 
recommend that researchers avoid the temptation to categorize continuous variables. One reason 
to leave variables as continuous is that categorization can decrease power. Interestingly, Maxwell 
and Delaney (1993) have also shown that in some situations categorization can have the opposite 
effect of producing spurious effects, thus inflating the Type I error rate. Thus, statistically significant 
interaction effects based on artificially categorized variables cannot necessarily be trusted, strength-
ening the argument for leaving continuous variables as continuous.

Researchers should also be aware that several other factors affect the ability to detect interactions 
in regression models. First, when X1 and X2 are measured with error, the product term X1X2 will 
generally be much less reliable than either X1 or X2, which tends to lower the power to detect an 
interaction. Researchers who use regression to investigate interactions need to consider carefully 
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the reliability of regressors. Second, McClelland and Judd (1993) showed that the distribution of 
regressors in observational studies will often reduce power, especially when regressors correlate 
substantially with one another. Third, Lubinski and Humphreys (1990) showed that when regres-
sors correlate substantially with one another, the Type I error for testing an interaction can be badly 
inflated if curvilinear effects exist but are not included in the regression model. Including higher 
order effects such as X1

2  and X 2
2  can guard against spurious interaction effects, but also runs the 

risk of greatly lowering power to detect true interaction effects. There is no clear consensus among 
methodologists at this point about how best to resolve this dilemma. At the very least authors who 
want to investigate interactions in regression models should be clear about the extent to which their 
regressors correlate with one another as well as the extent to which theoretical considerations either 
do or do not rule out possible curvilinear effects. Given the scope of the topic of interactions, we 
recommend that readers consult such sources as Aiken and West (1991) and Jaccard and Turrisi 
(2003) for further information, as well as Chapter 18 in this volume.

10. Models Examining Mediation

Baron and Kenny (1986) clarified the distinction between moderation and mediation. Both involve 
a role that X2 (for example) may play in the relation between X1 and Y, leading some researchers 
to confuse moderation and mediation. Thus, it is incumbent on authors of papers reporting either 
moderation or mediation to provide a clear theoretical rationale for their study.

The variable X2 mediates the relation between X1 and Y when X1 causes X2 and X2 in turn causes 
Y. Thus, mediation can be represented by a pair of regression models:

X Xi i i2 0 1 1= + +β β ε* * *  (6)

Y X Xi i i i= + + +β β β ε0 2 1 3 2 , (7)

where the asterisk represents values from the model where X2 is the dependent variable with X1 as its 
regressor. From this perspective, X2 is a mediator when both β1 and β3 are non-zero. In the special 
case where β2 equals 0, X2 is said to completely (or fully) mediate the relation between X1 and Y; 
otherwise, X2 partially mediates the relation.

Baron and Kenny (1986) suggested a four-step procedure for establishing mediation. Subsequent 
research has studied their approach as well as a variety of alternatives. This is an area of continuing 
methodological research, and at this point either of two different approaches seems advisable for 
establishing mediation. One approach involves bootstrap methods (Shrout & Bolger, 2002). The 
other involves the distribution of the product variable β1β3 (MacKinnon, Lockwood, & Williams, 
2004). We recommend that authors use either of these two methods to test mediation. Authors 
should also report coefficients and corresponding confidence intervals for relevant parameters as 
shown in Equations (6) and (7).

Several other factors should be considered in a mediation analysis. First, it is well known that error 
of measurement in the mediator causes biased estimates of regression coefficients. In three-variable 
models such as those in Equations (6) and (7), random measurement error will tend to result in an 
underestimate of the mediated effect and an overestimate of the direct effect of X1 on Y. Researchers 
should address this likely bias in any interpretation of their results unless the mediator is measured 
without error. Alternatively, a latent variable model might be used in order to address measurement 
error and its biasing effects. Second, Maxwell and Cole (2007) have shown that cross-sectional esti-
mates of mediation can be seriously biased when mediation occurs over time. Researchers who rely 
on cross-sectional analyses need to interpret their results with appropriate caution, and should be 
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encouraged to consider longitudinal designs instead of cross-sectional designs. Third, researchers 
should carefully consider necessary sample size to obtain adequate power. Fritz and MacKinnon 
(2007) provided useful guidelines. Fourth, further information about mediation, especially for more 
complicated models with more than three variables, is available in Chapter 18 of this volume and in 
MacKinnon, Fairchild, and Fritz (2007) and MacKinnon (2008).

11. Checking Assumptions Visually

The assumptions of the multiple regression model should be considered and evaluated whenever the 
model is used. As Anscombe (1973) noted, graphs can help researchers appreciate broad features of 
data and look beyond broad features to literally see potentially unexpected relationships, outliers, 
and violations of assumptions, et cetera. Anscombe went on to show four very different figures, 
three of which have gross violations of multiple regression assumptions, yet where the results from 
the regression model were the same (i.e., estimates, p-values, confidence intervals, etc.). Recall that 
the linearity assumption is that the expected value of Y given the K regressors is a linear function 
of the K variables. We recommend a conditioning plot (also referred to as a coplot) for examining 
the critical assumption of linearity. Another useful set of plots for this purpose are residual versus 
predictor (RVP) and component plus residual (CPR) plots. One way to evaluate violations of this 
assumption for “obvious” violations is by plotting the residuals as a function of the model implied 
values. An obvious nonlinear relationship is evidence that the linearity assumption does not likely 
hold. When such is the case, there might be an important variable not included in the model, an 
interaction term might be appropriate, or the relation between the K regressors and the criterion 
might be nonlinear in nature. As previously noted, the latter, in our opinion, is not considered fre-
quently enough, and correspondingly nonlinear models are not applied in many areas as often as we 
believe that they should be, based on theory and empirical evidence. For example, sigmoidal forms 
or asymptotic values cannot adequately be modeled with linear models. We suggest readers consult 
Seber and Wild (1989) for a discussion of nonlinear regression models.

Recall that the errors in a multiple regression model fitted with ordinary least squares are assumed 
to be normally distributed for the validity of the significance test and confidence intervals. A normal- 
quantile–empirical-quantile plot (generally termed a qq-plot) is a two-dimensional plot where 
theoretical quantiles from the normal distribution are compared to the empirical quantiles of the 
observed errors. The qq-plot allows a visual evaluation of the assumption of normality of the errors. 
Gross violations of the normality assumption of the errors can often easily be seen with the use of 
a qq-plot. Although there are formal statistical tests to evaluate normality, visual displays are often 
extremely effective at identifying potential problems and are often easier to implement and interpret.

Matrix scatterplots (sometimes called pairs plots) are helpful to examine the bivariate relations 
among the K + 1 variables. These plots can also reveal observations that might be miscoded or identify 
potential outliers. Further, those cases that might not be considered outliers on either of two variables 
individually might be an outlier in a bivariate sense (which could heavily influence estimation and 
inference). For example, if there is a strong positive relation between X1 and Y, yet one observation 
has a very low X1 value and a very high Y value, that point would disproportionally affect the estimate 
of the line of best fit (e.g., Cohen et al., 2003, for a review). Such a case would not be readily identified 
without visualization (or more formal outlier/influential data point checks), which could allow the 
possibility of further investigating such a unique case. Cases in such situations are said to be leveraging 
points. In general, formally operationalizing what constitutes an outlier and appropriately dealing with 
them can be difficult, but it is nevertheless important. Cohen et al. (2003, ch. 10) provided a detailed 
discussion of possible causes and possible remediations when outliers are believed to exist. Regardless 
of the exact way in which outliers are dealt with, transparency to the reader is key. Transparency is 
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especially important because two researchers analyzing the same data might come to different conclusions 
when fitting the same model based only on how outliers are addressed.

In published work, space is often at a premium, which has the effect of only infrequently printing fig-
ures that evaluate the model assumptions (e.g., RVP, CPR, qq-plots). Nevertheless, even if such figures 
are not part of the published version of a work, there is little question that they can be very beneficial 
for authors, as well as satisfying reviewer curiosity on model fit and appropriateness, and can help to 
convey relationships to the reader easier seen than said. We think it is generally wise for authors to 
include a brief discussion of the (published or unpublished) figures and the seemingly appropriateness 
or inappropriateness of the model. Of course, if the figures help to identify weakness in the appropriate-
ness of the model, other models should be considered and such a finding noted in the work. In short, 
visualization techniques should help justify the model chosen and this information should be conveyed 
to readers.

We are sensitive to the amount of journal space that such plots can consume. Due to limited jour-
nal space, editors may be reluctant to allow several pages of figures, even if they are informative. We 
believe a reasonable solution is for authors to produce supplemental material that can be referenced 
in the article but stored on a journal’s supplemental materials web page, which many journals now 
make available. If not on a journal supplements page, the author(s) can often post additional infor-
mation on an archival site (e.g., via university library).

12. Measurement Error

Measurement error in multiple regression can be conceptualized in a 2 × 2 × 2 array, where depend-
ing on the specific conditions the effect of measurement error has different implications. The 
dimensions of the array are (a) type of measurement error (random or nonrandom), (b) type of 
variable (regressor or criterion), and (c) type of coefficient (unstandardized or standardized). We 
will briefly describe each dimension of the array below.

Random measurement error, which is omnipresent in research, is uncontrolled error that is 
assumed to have a mean of zero. Nonrandom measurement error, however, work will tend to have a 
mean that is not zero and/or be correlated with errors. In short, nonrandom measurement error in 
the criterion and/or the regressor is problematic and can lead to biased estimates of model param-
eters. Because nonrandom measurement errors often represent a flaw in the measurement procedure, 
instrument, or design, we will simple say that multiple regression is not generally appropriate in 
circumstances of nonrandom measurement error, with the exception being when the nonrandom 
error is so small that is has essentially no effect on the mean and covariance structures of the variables.

We will assume the random measurement errors have a mean of zero and are uncorrelated with 
measured variables, with their corresponding true scores, and with all other errors. Provided the 
regressors are unstandardized, any measurement error in Y is absorbed into the model error term, 
from Equation (1), and has no effect on the expected value of the regression coefficients. Thus, 
under the standard multiple regression assumptions, the regression coefficients remain unbiased. 
However, because the model error variance increases, the estimate of the squared multiple cor-
relation coefficient is systematically lowered. Because R2 decreases—it is attenuated due to a larger 
error variance—the standard errors of the regression coefficients will also be larger, implying that 
statistical power and the accuracy of parameter estimates are reduced via a decrease in precision. 
However, in the situation where the regression model is standardized, the regression coefficients 
will be attenuated when the criterion is measured with error (Kenny, 1979). The attenuation occurs 
when the criterion is measured with error because for standardized regression coefficients the mul-
tiplier (i.e., s sxk Y/  for the kth regressor) of the unstandardized regression coefficient that yields the 
standardized regression coefficient has a denominator whose expected value is larger than the true 
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value. The expected value of sY  is larger than σYT , the population standard deviation of the true 
scores of Y. From a classical test theory perspective on random measurement errors, the variance 
of Y is the sum of the true score variance (σYT

2 ) and the error variance (σYE
2 ). Thus, will tend to be 

larger than σYT , which leads to observed standardized regression coefficients smaller than their cor-
responding true values (Kenny, 1979, ch. 5).

In observational research, the case of random measurement error in one or more regressors will 
generally lead to biased regression coefficients, regardless of whether or not the regressors are stand-
ardized. As Fox (2008) showed, in simple regression (i.e., when K = 1) when measurement error 
occurs in the (only) regressor, its regression coefficient is generally attenuated. However, with one 
exception, no general statement can be given for the effect of measurement error in one regressor on 
the regression coefficient for the other regressors in a multiple regression model (i.e., when K > 1). 
As Kenny (1979, p. 104) pointed out, measurement error in one regressor can attenuate regression 
coefficients, make the estimate of a regression coefficient that is zero be nonzero, and can change 
the sign of a regression coefficient. The exception noted is for designed experiments, where the 
randomly assigned variable is uncorrelated with other regressors in the model. When the randomly 
assigned variable has measurement error, the regression coefficient is less accurate; it is unbiased 
but less precise. Because the regression coefficient is less precise, the corresponding confidence 
interval tends to be wider and the test of the null hypothesis will not be as powerful (larger p-value).

In general, the difficulty in saying what happens when measurement error occurs in an obser-
vational application of multiple regression lies in the multivariate nature of multiple regression, as 
the properties of one regressor influence the regression coefficients of all other regressors. In short, 
when a regressor is measured with error in an observational application, its effects are not partialed 
out as fully as when it is measured without error. This concept is easiest to understand when one 
regressor is perfectly unreliable, and thus the effects of the true regressor have not been partialed in 
any way (Kenny, 1979). As a result, the coefficients for other regressors in the model are generally 
biased because the perfectly unreliable regressor has not been controlled for at all. The important 
point is that whenever a regressor is measured with error, not only is the coefficient associated with 
that regressor biased, but typically so are all of the other coefficients in the model, including even 
coefficients for any regressors that happen to be measured without error. Because the value of the 
regression coefficient for the variable that is measured with error is biased, being smaller in magni-
tude than it otherwise would have been if the variable were perfectly reliable, the bias will generally 
lead to an error variance larger than it would have been, which then leads to a negatively biased 
estimate of Ρ2 (i.e., R2 is, on average, smaller than it should be), ultimately leading to larger standard 
errors for all of the regression coefficients in the model.

It is desirable to minimize measurement error in all uses of multiple regression. However, meas-
urement error is especially problematic when the primary goal is explanation, because theoretical 
explanations virtually always relate to constructs, not to variables measured with error. When con-
fronted with nontrivial measurement error, it is often advisable to obtain multiple measures of each 
construct and use structural equation modeling (see Chapter 33, this volume) instead of multiple 
regression. Measurement error can be less problematic when the goal is prediction, because the practi-
cal goal is often to determine how well regressors as measured can predict the criterion as measured. 
When the goal is explanation and nontrivial measurement error is likely to occur, we generally recom-
mend obtaining multiple measures of each construct so that structural equation modeling can be used.

13. Statement of Limitations

Multiple regression is a flexible system for linking K regressor variables to a criterion variable of interest. 
In many cases, multiple regression is an appropriate statistical model for addressing common research 
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questions, whether they be for purposes of explanation, prediction, or both. Nevertheless, multiple 
regression has limitations that are defined in part by the model and its assumptions as well as by the 
research design. The limitations of multiple regression in the specific context should be discussed.

Multiple regression has limitations, like other statistical models, when attempting to infer causal-
ity from a research design that was not experimental in nature (i.e., when random assignment of 
levels of the regressors to the participants was not part of the design). Although including additional 
regressors that are thought to be correlated with the regressor of interest adds a form of statisti-
cal control, with regard to causality there is no way to “control” all possible confounders unless 
randomization is an explicit part of the design. In purely observational designs, claims of causality 
should generally be avoided. The benefits of randomization cannot be overemphasized, even if for 
only some of the variables in the design, because randomization implies that the participants have 
equal population properties (e.g., mean and covariance structures) on all outside variables.

Variables termed “control” variables are often included in multiple regression, as previously 
noted. However, including a control variable in the model in no way implies that the variable can lit-
erally be “controlled”—use of such a term is based on a precise statistical meaning and is not literal 
in the sense of everyday language. When something is “controlled for” it allows for the linear effect 
of each regressor on the criterion variable to be evaluated (i.e., a regression coefficient estimated), 
while holding constant the value of the other regressor variables. In practice, however, many vari-
ables cannot be controlled by the researcher, even in the most carefully designed studies. Thus, there 
is not literally any control by the researcher in an observational design over the variables said to be 
“controlled for.” Rather, an effect can be examined while holding constant the other variables.

The reasonableness of temporal ordering of variables needs to be considered, as multiple regres-
sion can be applied in ways such that an explanatory variable is nonsensically used to model a 
criterion variable. Although the multiple regression model may account for a large proportion of 
variance, it might not make theoretical sense. For example, multiple regression could be used to 
model “time spent studying” as a function of “test score.” However, such a model is nonsensical in 
the sense that “time spent studying” would be an explanatory variable of “test score.” This is a sim-
ple example of a causality problem, in the sense that the multiple regression model itself does not 
make a distinction between what causes what. Theory, of course, should be the guiding principle of 
the specification and direction of causal relationships. Inferring causality can be difficult, especially 
because there technically needs to be some passage of time that occurs in order for a regressor to 
literally cause some change in a criterion (unless simultaneous causality is presumed).

14. Alternatives to Multiple Regression

When the assumption of normality of errors is violated, nonparametric approaches to inference for 
multiple regression should be considered (e.g., Efron & Tibshirani, 1993; Györfi, Kohler, Krzyzak, 
& Walk, 2002). Multiple regression assumes that outcome variables are continuous and observed. 
However, when the criterion variable is censored, truncated, binary/dichotomous, ordinal, nomi-
nal, or count, an extension of the general linear model termed the generalized linear model, where 
a link function (e.g., exponential, Poisson, binomial, logit) relates the linear regression equation 
(analogous to the right hand side of Equation (1)) to a function of the criterion variable (e.g., prob-
ability of an affirmative response) can be used (e.g., Agresti, 2002; Long, 1997; McCullagh & Nelder, 
1989; Chapters 16 and 17 in this volume).

Linearity is an assumption that is not reasonable in some situations, either based on theoretical 
or empirical evidence (e.g., the graphical displays previously discussed). Spline regression models 
allow different slopes over ranges of one or more regressors, in what has appropriately been termed 
a piecewise model (e.g., Fox, 2000; Ruppert, Wand, & Carroll, 2003). In spline regression multiple 
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“knots” exists, where the slope of the regression line (potentially) changes over specified ranges 
(note that the slopes can be discontinuous in that they need not overlap at a knot). Another non-
parametric regression procedure is known as lowess (locally weighted scatterplot smoothing) (also 
denoted loess; e.g., Cleveland, 1979; Fox, 2008), in which multiple regression models are fitted to 
areas/regions of the regressor(s) with “local” points receiving more weight than more distant points. 
The definition of “local” changes as a function of the width of the span selected, which is a param-
eter in the control of the analyst and for which there is not a single best answer to the ideal size of 
the span. For short spans the line of best fit can differ dramatically over a small range of a predictor, 
whereas a wide span tends to have a relatively smooth relationship between the regressor(s) and 
the criterion. Lowess techniques are most often used when K = 1. More general than lowess models 
are generalized additive models that allow some regressors to enter the model linearly and some to 
enter as splines (Ruppert et al., 2003, p. 215).

Applications of the general linear model are not robust to violations of the assumption of inde-
pendent observations. Even for the simple case of the two independent group t-test, which can be 
considered a special case of multiple regression, it is known that the nominal and empirical Type I 
error rate can be drastically different when the assumption of independence is violated (e.g., Lissitz 
& Chardos, 1975). When observations are not independent (e.g., students nested within class-
rooms, clients nested within therapists, observations nested within person), appropriate methods to 
explicitly control for the lack of independence should be used. A general approach to handling such 
nonindependence is multilevel models (also termed hierarchical linear models, mixed effects models, 
or random coefficient models; see Chapter 22, this volume).

When measurement error is not ignorable, multiple regression is not ideal and latent variable 
models should be considered, especially when the primary goal is explanation instead of predic-
tion. In particular, confirmatory factor analysis (see Chapter 8, this volume) and structural equation 
modeling (see Chapter 33, this volume) allow for explicitly incorporating error into the model of 
interest, which has the effect of separating the “true” part of the model from the “error” part.
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Campbell and Fiske (1959) argued that every measurement we obtain in psychology is a trait-method 
composite—a measure purportedly of a particular trait construct obtained using a given method of 
measurement. Campbell and Fiske introduced the multitrait–multimethod (MTMM) matrix as a 
tool for evaluating systematically the correlations among a set of measures obtained using multiple 
methods. The primary utility of the MTMM matrix approach is the opportunity such a study affords 
to determine the preponderance of trait-related and method-related variance in measures in a bat-
tery. To aid in this evaluation, Campbell and Fiske argued that researchers should measure each of t 
traits (e.g., Extraversion, Neuroticism, Fluid Intelligence) using each of m methods (e.g., self-report, 
objective tests, observer ratings), so that each trait is measured using each method. By arranging 
trait measures in the same order within methods, the MTMM matrix should exhibit clear patterns 
to satisfy the dictates of convergent and discriminant validation. Convergent validation is satisfied if 
the researcher finds high correlations among measures of putatively the same construct using differ-
ent methods of measurement, and discriminant validation is satisfied if low correlations are found 
among measures of presumably different constructs. Campbell and Fiske described several rules of 
thumb for evaluating patterns of correlations in the MTMM matrix. Specifically, (a) correlations 
between measures of the same construct obtained using different methods of measurement should 
be large; (b) correlations between measures of the same construct obtained using different methods 
of measurement should be larger than correlations of those measures with measures of different 
constructs obtained using the same or different methods; and (c) the same pattern of trait correla-
tions should hold for all combinations of methods.

Among others, Jöreskog (1971) pioneered the fitting of confirmatory factor analysis (CFA) models 
to MTMM data. The CFA approach circumvented several problems associated with the Campbell 
and Fiske (1959) rules of thumb. In particular, the CFA approach (a) yielded clear significance tests 
of differences between alternative models and of specific parameter estimates, whereas the ordinal 
comparisons involved in the Campbell-Fiske rules of thumb relied on dependent comparisons that 
compromised statistical tests; (b) allowed for tests of the amount of trait-related and method-related 
variance in the MTMM matrix; and (c) led to estimates of the amount of trait-related and method-
related variance in each measure. Widaman (1985) systematized earlier work on CFA models and 
provided an informative taxonomy of models for MTMM data by cross-classifying available trait factor 
structures and method factor structures. In addition, Widaman discussed alternate analytic strategies 


