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EXPERIMENTAL DESIGN

Empirical research involves an experiment in which
data are collected in two or more conditions that
are identical in all aspects but one. A blueprint for
such an exercise is an experimental design. Shown
in Table 1 is the design of the basic experiment. It
has (a) one independent variable (color) with two
levels (pink and white); (b) four control variables
(age, health, sex, and IQ); (c) a control procedure
(i.e., random assignment of subjects); and (d) a
dependent variable (affective score).

Method of Difference and

Experimental Control

Table 1 also illustrates the inductive rule, method
of difference, which underlies the basic one-factor,
two-level experiment. As age is being held con-
stant, any slight difference in age between subjects
in the two conditions cannot explain the difference
(or its absence) between the mean performances of
the two conditions. That is, as a control variable,

age excludes itself from being an explanation of
the data.

There are numerous extraneous variables, any
one of which may potentially be an explanation of
the data. Ambiguity of this sort is minimized with
appropriate control procedures, an example of
which is random assignment of subjects to the two
conditions. The assumption is that, in the long
run, effects of unsuspected confounding variables
may be balanced between the two conditions.

Genres of Experimental Designs

for Data Analysis Purposes

Found in Column I of Table 2 are three groups of
designs defined in terms of the number of factors
used in the experiment, namely, one-factor, two-
factor, and multifactor designs.

One-Factor Designs

It is necessary to distinguish between the two-
level and multilevel versions of the one-factor
design because different statistical procedures are
used to analyze their data. Specifically, data from
a one-factor, two-level design are analyzed with
the t test. The statistical question is whether or not
the difference between the means of the two condi-
tions can be explained by chance influences (see
Row a of Table 2).

Some version of one-way analysis of variance
would have to be used when there are three or
more levels to the independent variable (see Row
b of Table 2). The statistical question is whether or
not the variance based on three or more test condi-
tions is larger than that based on chance.

With quantitative factors (e.g., dosage) as
opposed to qualitative factors (e.g., type of drug),

Table 1 Basic Structure of an Experiment

Control Variables Control Procedure

Test

Condition

Independent

Variable

Manipulated,

Wall Color Age Health Sex IQ

Random

Assignment

of Subjects (Si)

Dependent

Variable,

Affective Score

Experimental Pink Middle-aged Good Male Normal S1, S21, S7,. . . S15 To be collected

and analyzed

Control White Middle-aged Good Male Normal S9, S10, S24,. . . S2
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one may ascertain trends in the data when a factor
has three or more levels (see Row b). Specifically,
a minimum of three levels is required for ascertain-
ing a linear trend, and a minimum of four levels
for a quadratic trend.

Two-Factor Designs

Suppose that Factors A (e.g., room color) and B
(e.g., room size) are used together in an experi-
ment. Factor A has m levels; its two levels are a1

and a2 when m ¼ 2. If Factor B has n levels (and
if n ¼ 2), the two levels of B are b1 and b2. The
experiment has a factorial design when every level
of A is combined with every level of B to define
a test condition or treatment combination. The
size of the factorial design is m by n; it has m-by-n
treatment combinations. This notation may be
generalized to reflect factorial design of any size.

Specifically, the number of integers in the name
of the design indicates the number of independent
variables, whereas the identities of the integers

stand for the respective number of levels. For
example, the name of a three-factor design is m by
n by p; the first independent variable has m levels,
the second has n levels, and the third has p levels
(see Row d of Table 2).

The lone statistical question of a one-factor,
two-level design (see Row a of Table 2) is asked
separately for Factors A and B in the case of the
two-factor design (see [a] and [b] in Row c of
Table 2). Either of them is a main effect (see [a]
and [b] in Row c) so as to distinguish it from a sim-
ple effect (see Row c). This distinction may be
illustrated with Table 3.

Main Effect

Assume an equal number of subjects in all treat-
ment combinations. The means of a1 and a2 are
4.5 and 2.5, respectively (see the ‘‘Mean of ai’’ col-
umn in either panel of Table 3). The main effect of
A is 2 (i.e., 4.5 � 2.5). In the same vein, the means
of b1 and b2 are 4 and 3, respectively (see the
‘‘Mean of bj’’ row in either panel of Table 3). The

Table 2 Genres of Experimental Designs in Terms of Treatment Combinations

Panel A: One-Factor Designs in Terms of Number of Levels

I II III

Number of

Factors

Number of

Levels in Factor

Statistical Test

(parametric) Statistical Question

a 1 2 t test Is the difference between the two means accountable by

chance influences?

b 3 or more One-way

ANOVA

Can the variance based on the means of the 3 (or more)

conditions be explained in terms of chance influences?

Are there trends in the data?

c 2ðA;BÞ m× n Two-way

ANOVA

Main effect of A: Is the difference between the m means of

A accountable by chance influences?

Main effect of B: Is the difference between the n means of

B accountable by chance influences?

AB interaction: Can the difference among the means of

the m× n treatment combinations accountable

by chance influences?

Simple effect of A: Is the difference among the m means

of A at Level j of B accountable by chance influences? influences?

Simple effect of B: Is the difference among the n means

of B at Level i of A accountable by chance influences?

d 3 or more m× n×p

or

m× n×p× q

Multi-factor

ANOVA

Extension of the questions found in two-way ANOVA
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main effect of B is 1. That is, the two levels of B
(or A) are averaged when the main effect of A (or
B) is being considered.

Simple Effect

Given that there are two levels of A (or B),
it is possible to ask whether or not the two levels
of B (or A) differ at either level of A (or B).
Hence, there are the entries, d3 and d4, in the
‘‘Simple effect of B at ai’’ column, and the
entries, d1 and d2, ‘‘Simple effect of A at bj’’ row
in either panel of Table 3. Those entries are the
four simple effects of the 2-by-2 factorial experi-
ment. They may be summarized as follows:

d1 ¼ Simple effect of A at b1 is (ab11 � ab21) ¼
(5 � 3) ¼ 2;

d2 ¼ Simple effect of A at b2 is (ab12 � ab22) ¼
(4 � 2) ¼ 2;

d3 ¼ Simple effect of B at a1 is (ab12 � ab11) ¼
(4 � 5) ¼ �1;

d4 ¼ Simple effect of B at a2 is (ab22 � ab21) ¼
(2 � 3) ¼ �1.

AB Interaction

In view of the fact that there are two simple
effects of A (or B), it is important to know
whether or not they differ. Consequently, the
effects noted above give rise to the following
questions:

[Q1] (DofD)12: Is d1 � d2 ¼ 0?

[Q2] (DofD)34: Is d3 � d4 ¼ 0?

Table 3 What May Be Learned From a 2-by-2 Factorial Design

(a)

Room Size (B)

Small (b1) Large (b2) Mean of ai

Main Effect

of A

Simple Effect

of B at ai

Room

Color (A)

Pink (a1) (i) Small,

Pink (ab11) 5

(ii) Large,

Pink (ab12) 4

(5 + 4) ‚ 2¼ 4.5 4.5� 2.5¼ 2 At a1:

d3¼ (5� 4)¼ 1

White (a2) (iii) Small,

White (ab21) 3

(iv) Large,

White (ab22) 2

(3 + 2) ‚ 2¼ 2.5 At a2:

d4¼ (3� 2)¼ 1

Mean of bj (5 + 3) ‚ 2¼ 4 (4 + 2) ‚2¼ 3 (DofD)1: d1 � d2¼ 2� 2¼ 0

(DofD)2: d3� d4¼ 1� 1¼ 0

Main effect of B 4� 3¼ 1 [Q1]: Is (DofD)12 zero?

Simple effect of A at bj At b1:

d1¼ (5� 3)¼ 2

At b2:

d2¼ (4� 2)¼ 2

[Q2]: Is (DofD)34 zero?

(b)

Room Size (B)

Small (b1) Large (b2) Mean of ai

Main Effect

of A

Simple Effect

of B at ai

Room

Color (A)

Pink (a1) (i) Small,

Pink (ab11) 15

(ii) Large,

Pink (ab12) 7

(15 + 7) ‚2¼ 11 11� 6¼ 5 At a1:

d3¼ (15� 7)¼ 8

White (a2) (iii) Small,

White (ab21) 2

(iv) Large,

White (ab22) 10

(2 + 10) ‚2¼ 6 At a2:

d4¼ (2� 10)¼�8

Mean of Bj (15 + 2) ‚ 2¼ 8.5 (7 + 10) ‚ 2¼ 8.5 (DofD)1: d1 � d2¼ 13� (�3)¼ 16

(DofD)2: d3� d4¼ 8� (�8)¼ 16

Main effect of B 8.5� 8.5¼ 0 [Q1]: Is (DofD)12 zero?

Simple effect of A at Bj At b1:

d1¼ (15� 2)¼ 13

At b2:

d2¼ (7� 10)¼�3

[Q2]: Is (DofD)34 zero?

Notes: (a) An example of additive effects of A and B. (b) An example of AB interaction (nonadditive) effects.
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Given that d1 � d2 ¼ 0, one is informed that
the effect of Variable A is independent of that of
Variable B. By the same token, that d3 � d4 ¼
0 means that the effect of Variable B is indepen-
dent of that of Variable A. That is to say, when
the answers to both [Q1] and [Q2] are ‘‘Yes,’’
the joint effects of Variables A and B on the
dependent variable are the sum of the individual
effects of Variables A and B. Variables A and B
are said to be additive in such an event.

Panel (b) of Table 3 illustrates a different sce-
nario. The answers to both [Q1] and [Q2] are
‘‘No.’’ It informs one that the effects of Variable
A (or B) on the dependent variable differ at dif-
ferent levels of Variable B (or A). In short, it is
learned from a ‘‘No’’ answer to either [Q1] or
[Q2] (or both) that the joint effects of Variables
A and B on the dependent variables are nonaddi-
tive in the sense that their joint effects are not
the simple sum of the two separate effects. Vari-
ables A and B are said to interact (or there is
a two-way AB interaction) in such an event.

Multifactor Designs

What has been said about two-factor designs
also applies to designs with three or more indepen-
dent variables (i.e., multifactor designs). For exam-
ple, in the case of a three-factor design, it is
possible to ask questions about three main effects
(A, B, and C); three 2-way interaction effects (AB,
AC, and BC interactions); a set of simple effects
(e.g., the effect of Variable C at different treatment
combinations of AB, etc.); and a three-way inter-
action (viz., ABC interaction).

Genres of Experimental

Designs for Data Interpretation Purposes

Experimental designs may also be classified in
terms of how subjects are assigned to the treat-
ment combinations, namely, completely random-
ized, repeated measures, randomized block, and
split-plot.

Completely Randomized Design

Suppose that there are 36 prospective subjects.
As it is always advisable to assign an equal number
of subjects to each treatment combination, six of

them are assigned randomly to each of the six
treatment combinations of a 2-by-3 factorial
experiment. It is called the completely randomized
design, but more commonly known as an unre-
lated sample (or an independent sample) design
when there are only two levels to a lone indepen-
dent variable.

Repeated Measures Design

All subjects are tested in all treatment combina-
tions in a repeated measures design. It is known by
the more familiar name related samples or depen-
dent samples design when there are only two levels
to a lone independent variable. The related sam-
ples case may be used to illustrate one complica-
tion, namely, the potential artifact of the order of
testing effect.

Suppose that all subjects are tested at Level I (or
II) before being tested at Level II (or I). Whatever
the outcome might be, it is not clear whether the
result is due to an inherent difference between
Levels I and II or to the proactive effects of the level
used first on the performance at the subsequent
level of the independent variable. For this reason,
a procedure is used to balance the order of testing.

Specifically, subjects are randomly assigned to
two subgroups. Group 1 is tested with one order
(e.g., Level I before Level II), whereas Group 2 is
tested with the other order (Level II before Level I).
The more sophisticated Latin square arrangement is
used to balance the order of test when there are
three or more levels to the independent variable.

Randomized Block Design

The nature of the levels used to represent an
independent variable may preclude the use of the
repeated measures design. Suppose that the two
levels of therapeutic method are surgery and radia-
tion. As either of these levels has irrevocable con-
sequences, subjects cannot be used in both
conditions. Pairs of subjects have to be selected,
assigned, and tested in the following manner.

Prospective subjects are first screened in terms
of a set of relevant variables (body weight, severity
of symptoms, etc.). Pairs of subjects who are iden-
tical (or similar within acceptable limits) are
formed. One member of each pair is assigned ran-
domly to surgery, and the other member to
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radiation. This matched-pair procedure is
extended to matched triplets (or groups of four
subjects matched in terms of a set of criteria) if
there are three (or four) levels to the independent
variable. Each member of the triplets (or four-
member groups) is assigned randomly to one of
the treatment combinations.

Split-Plot Design

A split-plot design is a combination of the
repeated measures design and the completely ran-
domized design. It is used when the levels of one
of the independent variables has irrevocable effects
(e.g., surgery or radiation of therapeutic method),
whereas the other independent variable does not
(e.g., Drugs A and B of type of drug).

Underlying Inductive Logic

Designs other than the one-factor, two-level design
implicate two other rules of induction, namely, the
method of concomitant variation and the joint
method of agreement and difference.

Method of Concomitant Variation

Consider a study of the effects of a drug’s dos-
age. The independent variable is dosage, whose
three levels are 10, 5, and 0 units of the medica-
tion in question. As dosage is a quantitative vari-
able, it is possible to ask whether or not the effect
of treatment varies systematically with dosage.
The experimental conditions are arranged in the
way shown in Panel (a) of Table 4 that depicts the
method of concomitant variation.

The control variables and procedures in Tables 1
and 4 are the same. The only difference is that each
row in Table 4 represents a level (of a single inde-
pendent variable) or a treatment combination (when
there are two or more independent variables). That
is to say, the method of concomitant variation is the
logic underlying factorial designs of any size when
quantitative independent variables are used.

Joint Method of Agreement and Difference

Shown in Panel (b) of Table 4 is the joint method
of agreement and disagreement. Whatever is true
of Panel (a) of Table 4 also applies to Panel (b) of

Table 4 Inductive Principles Beyond the Method of Difference

(a)

Control Variables Control Procedure

Test Condition

Independent

Variable

Manipulated,

Medication Age Health Sex IQ

Random

Assignment

of Subjects

Dependent

Variable,

Affective Score

Experimental

(High dose)

10 units Middle-aged Good Male Normal S1, S21, S7, . . . S36 To be collected

and analyzed

Experimental

(Low dose)

5 units Middle-aged Good Male Normal S9, S10, S24, . . . S27

Control Placebo Middle-aged Good Male Normal S9, S10, S24, . . . S12

(b)

Control Variables Control Procedure

Test Condition

Independent

Variable

Manipulated,

Wall Color Age Health Sex IQ

Random

Assignment

of Subjects

Dependent

Variable,

Affective Score

Experimental Pink Middle-aged Good Male Normal S1, S21, S7, . . . S15 To be collected

and analyzedControl (hue) White Middle-aged Good Male Normal S9, S10, S24, . . . S2

Control (brightness) Green Middle-aged Good Male Normal S9, S10, S24, . . . S12

Notes: (a) Method of concomitant variation. (b) Joint method of agreement and difference.
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Table 4. It is the underlying inductive rule when
a qualitative independent variable is used (e.g.,
room color).

In short, an experimental design is a stipulation
of the formal arrangement of the independent,
control, and independent variables, as well as the
control procedure, of an experiment. Underlying
every experimental design is an inductive rule that
reduces ambiguity by rendering it possible to
exclude alternative interpretations of the result.
Each control variable or control procedure
excludes one alternative explanation of the data.

Siu L. Chow

See also Replication; Research Hypothesis; Rosenthal

Effect
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EXPERIMENTER EXPECTANCY

EFFECT

The experimenter’s expectancy effect is an impor-
tant component of the social psychology of the psy-
chological experiment (SPOPE), whose thesis is that
conducting or participating in research is a social
activity that might be affected subtly by three social
or interpersonal factors, namely, demand character-
istics, subject effects, and the experimenter’s expec-
tancy effects. These artifacts call into question the
credibility, generality, and objectivity, respectively,
of research data. However, these artifacts may be
better known as social psychology of nonexperi-
mental research (SPONE) because they apply only
to nonexperimental research.

The SPOPE Argument

Willing to participate and being impressed by the
aura of scientific investigation, research participants

may do whatever is required of them. This demand
characteristics artifact creates credibility issues in the
research data. The subject effect artifact questions
the generalizability of research data. This issue arises
because participants in the majority of psychological
research are volunteering tertiary-level students who
may differ from the population at large.

As an individual, a researcher has profound
effects on the data. Any personal characteristics of
the researcher may affect research participants
(e.g., ethnicity, appearance, demeanor). Having
vested interests in certain outcomes, researchers
approach their work from particular theoretical
perspectives. These biases determine in some subtle
and insidious ways how researchers might behave
in the course of conducting research. This is the
experimenter expectancy effect artifact.

At the same time, the demand characteristics
artifact predisposes research participants to pick up
cues about the researcher’s expectations. Being
obligingly ingratiatory, research participants ‘‘coop-
erate’’ with the researcher to obtain the desired
results. The experimenter expectancy effect artifact
detracts research conclusions from their objectivity.

SPOPE Revisited—SPONE

Limits of Goodwill

Although research participants bear goodwill
toward researchers, they may not (and often can-
not) fake responses to please the researcher as
implied in the SPOPE thesis.

To begin with, research participants might give
untruthful responses only when illegitimate fea-
tures in the research procedure render it necessary
and possible. Second, it is not easy to fake
responses without being detected by the researcher,
especially when measured with a well-defined task
(e.g., the attention span task). Third, it is not pos-
sible to fake performance that exceeds the partici-
pants’ capability.

Nonexperiment Versus Experiment

Faking on the part of research participants is
not an issue when experimental conclusions are
based on subjects’ differential performance on the
attention span task in two or more conditions with
proper controls. Suppose that a properly selected
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