
Responses are aggregated and summarized, and
participant identity should be confidential or anon-
ymous. Statistical procedures for reporting survey
data include frequencies, percent, cross-tabulations
(cross-tabs), chi-square statistic, phi coefficient,
Kendall coefficient, and the gamma statistic.

Correlation

Correlation research is used to explore relation-
ships between or among two or more variables.
Correlation studies are useful for establishing pre-
dictive validity, establishing test reliability, and
describing relationships. Simple correlation proce-
dures involve ascertaining the relationship between
two variables, whereas partial correlation proce-
dures are used to control for a variable that may
influence the correlation between two other vari-
ables. A multiple correlation coefficient (multiple
regression) indicates the relationship between the
best combination of independent variables and
a single dependent variable. Canonical correlation
indicates the relationship between a set of inde-
pendent variables and a set of dependent varia-
bles. The kind of correlation coefficient computed
depends on the type of measurement scale used
and the number of variables.

Marie Kraska
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QUASI-EXPERIMENTAL DESIGN

A scientific experiment is a controlled set of
observations aimed at testing whether two or
more variables are causally related. William
Shadish, Thomas Cook, and Donald Campbell
describe two broad types of experiments: (a) ran-
domized experiments, in which study units are
randomly assigned to observational conditions;
and (b) quasi-experiments, in which study units
are not randomly assigned to observational con-
ditions because of ethical or practical con-
straints. Although it is more difficult to draw
causal inferences from quasi-experiments than
from randomized experiments, careful planning
of quasi-experiments can lead to designs that
allow for strong causal inferences.

In order to infer a relationship between cause
and effect, three requirements must be met: Cause
must precede effect; cause must be related to
effect; and, aside from the cause, no alternative
explanation for the effect must be plausible.
Randomized and quasi-experiments do not differ
with respect to the first two requirements.
However, with respect to the third requirement,
randomized experiments have an advantage over
quasi-experiments. Because study units are ran-
domly assigned to conditions in randomized
experiments, alternative explanations (e.g., con-
founding variables) are equally likely across these
conditions and can be ruled out. But because
quasi-experiments lack random assignment bet-
ween conditions, alternative explanations are diffi-
cult to rule out. This entry focuses on the validity
of, common designs of, and inferences drawn from
quasi-experiments.

Validity

Inferences based on an experiment are only
as good as the evidence that supports them. The
term validity is used to refer to the relation
between the conclusion of an inference and its
supporting evidence. In experimentation, infer-
ences (i.e., conclusions) are valid if they are
plausible.

A number of conditions must be met in order to
draw a valid inference based on an experiment.
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These conditions fall into four categories. First, the
internal validity of an inference refers to whether
the covariation between the experimental manipu-
lation and the experimental outcome does indeed
reflect a causal relationship between the manipula-
tion and outcome. Second, external validity refers
to the generalizability of an inference (i.e., do
the results of the experiment apply outside of the
experimental setting?). Third, statistical conclu-
sion validity refers to the validity of inferences
about the covariation between manipulation and
outcome. Fourth, construct validity refers to the
validity of inferences about the higher order
construct(s) that the experimental manipulation
operationalizes.

Threats to Internal Validity

Factors that influence the nature and strength of
inferences are referred to as threats to validity. Of
particular relevance to quasi-experimental designs
are threats to internal validity as they increase the
likelihood that a plausible alternative explanation
for the experimental outcome exists. Shadish and
colleagues identify the following threats to internal
validity:

Ambiguous temporal precedence: Lack of clarity
about which variable occurred first may yield
confusion about which variable is the cause and
which is the effect.

Selection: Systematic differences over conditions in
respondent characteristics that could also cause the
observed effect.

History: Events occurring concurrently with
treatment could cause the observed effect.

Maturation: Naturally occurring changes over time
could be confused with a treatment effect.

Regression: When units are selected for their
extreme scores, they will often have less extreme
scores on other variables, an occurrence that can be
confused with a treatment effect.

Attrition: Loss of respondents to treatment or to
measurement can produce artificial effects if that
loss is systematically correlated with conditions.

Testing: Exposure to a test can affect scores on
subsequent exposures to that test, an occurrence
that can be confused with a treatment effect.

Instrumentation: The nature of a measure may
change over time or conditions in a way that could
be confused with a treatment effect.

Additive and interactive effects of threats to
internal validity: The impact of a threat can be
added to that of another threat or may depend on
the level of another threat.

Common Designs

Because threats to internal validity are prominent
in quasi-experiments, care must be taken to ensure
that the influence of these threats to validity is
minimized. Shadish and colleagues discuss three
principles useful in this respect: identification and
study of plausible threats to internal validity;
design controls that limit threats to internal valid-
ity (e.g., control groups, pretest/posttest designs);
and specific hypotheses that limit the number of
viable alternative explanations (e.g., predicted
interactions or inclusion of nonequivalent depen-
dent variables, that is, a dependent variable that is
predicted not to change because of the mani-
pulation but is expected to respond to threats to
internal validity the same way as the dependent
variable being studied). Four types of common
quasi-experimental designs are discussed, each of
which has its own advantages and disadvantages
concerning threats to internal validity. This discus-
sion and examples of quasi-experimental designs
draw on the work of Shadish and colleagues.

Designs Without a Control Group

One-Group Posttest-Only Design

This is a simple design involving a posttest on
participants (O1) following a manipulation (X).

X O1

For example, suppose knowledge of the causes
of sudden infant death syndrome (SIDS) is low
and stable within a community. Public health
officials create a media campaign to raise aware-
ness regarding factors affecting SIDS. Following
the campaign, a sample of citizens is surveyed
concerning their knowledge of these factors. If
the citizens are aware of factors affecting SIDS
(O1), one may infer that this is due to the media
campaign (X).
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Nonetheless, the one-group posttest-only design
is a very weak design. It is impossible to guarantee
temporal precedence, and furthermore, nearly all
other threats to internal validity may apply. One
way to improve this design, although it will remain
weak, is to use multiple, unique posttests (O1A

through O1N).

X fO1A O1B . . . O1Ng

Results of the several posttests can be assessed
individually and compared to the hypothesized
outcomes for each individual posttest and the
manipulation. This decreases the likelihood of an
invalid inference based on just a single prediction.

One-Group Pretest–Posttest Design

Instead of having a single observation, as in the
previous design, the one-group pretest–posttest
design has a pretest measure (O1) before manipu-
lation (X) as well as a posttest measure (O2) fol-
lowing treatment.

O1 X O2

For example, Jonathan Duckhart studied the
effects of a program to reduce environmental lead
in low-income urban housing units in Baltimore.
Lead levels in each home were measured at pre-
test and following the intervention. Lead levels
decreased between pretest and posttest, supporting
the conclusion that the program was effective.

Because of the pre- and posttest, temporal pre-
cedence is more easily established, although the
effect could still have been caused by history or
maturation. Possible improvements involve using
a double pretest,

O1 O2 X O3

or a nonequivalent dependent variable.

fO1A O1Bg X fO2A O2Bg

A double pretest can give an estimate of biases
that may exist in the observed effect of the manip-
ulation at posttest. Differences between the post-
test and the second pretest that are similar to
differences between the two pretests are likely due
to factors other than the manipulation. Using
a nonequivalent dependent variable reduces many

threats to internal validity because any changes
from pretest to posttest not due to the manipula-
tion should affect the original dependent variable
as well as the nonequivalent dependent variable.

Control Group Designs

Nonequivalent Groups Posttest-Only Design

The nonequivalent groups posttest-only design
is similar to the one-group posttest-only design
with a control group added (where NR indicates
nonrandom assignment).

NR X O1

NR O2

For example, suppose psychotherapy researchers
obtained two samples of individuals with depres-
sion: those who have attended psychotherapy and
those who have not. If those who attend psycho-
therapy have fewer depressive symptoms than
those who did not, the researchers may conclude
that psychotherapy reduced the symptoms.

The added control group is a definite improve-
ment over the design lacking a control group as it
indicates which effects occur without the manipu-
lation. However, the design is still rather weak
because the experimental and control groups may
have differed on many nonmanipulated variables
related to outcome. This situation is often referred
as selection bias. To estimate selection bias,
this design can include an independent pretest
sample that does not receive the experimental
manipulation.

NR O1 j X O2

NR O1 j O2

Here, the pretest and posttest samples are inde-
pendent across time (i.e., they may be sampled at
the same moment in time, and thus on different
study units).

Further improvements include matching (where
study units with similar scores are matched across
experimental and control groups), using internal
controls (where the control group consists of
a sample drawn from a population similar to that
of the experimental group), using multiple
nonequivalent control groups, and using a pre-
dicted interaction (a highly differentiated causal
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hypothesis that predicts one particular interaction
but excludes others).

Nonequivalent Groups Pretest–Posttest Design

The nonequivalent groups pretest–posttest design
is similar to the one-group pretest–posttest design
with a control group added.

NR O1 X O2

NR O1 O2

Note that although similar to the nonequiva-
lent groups posttest-only design with a pretest,
the current design includes a dependent pretest,
that is, pretest and posttest data are gathered on
the same study units. For example, Grace Carter,
John Winkler, and Andrea Biddle compared
scientists who had received a Research Career
Development Award from the National Institutes
of Health in order to improve their research
careers to those who did not. They found that at
posttest, scientists who had received such an
award did better than those who did not.
However, the former also exceeded the latter at
pretest, thus calling into the question the effec-
tiveness of the research awards.

Because pretest and posttest data are gathered
on both experimental and control groups, only
one of which receives the experimental manipula-
tion, the existence of a possible selection bias may
be estimated. Insofar as selection is present, it may
magnify the effects of other threats to internal
validity (e.g., maturation).

Improvements of this design include a double
pretest that allows for the assessment of the
selection-maturation threat to internal validity,

NR O1 O2 X O3

NR O1 O2 O3

;

switching replications, which entails delivering the
manipulation to control group at a later date,

NR O1j X O2 O3

NR O1j O2 X O3

;

using a reversed treatment control group, in which
two manipulations are delivered that are opposite
in direction of effect,

NR O1 Xþ O2

NR O1 X� O2

;

or direct measurement of threats to validity and
incorporating these estimates into statistical analy-
sis of the outcomes.

In addition to these modifications, cohort (suc-
cessive, comparable groups) controls may also be
used to improve the nonequivalent groups pretest-
posttest design:

NR O1

NR X O2

:

The first group, which is similar to the second
group in relevant aspects, does not receive the
experimental manipulation, whereas the second
group does. Because of the similarity of the two
groups, any differences between them are assumed
to be related to the manipulation.

This simple cohort control design may be fur-
ther improved by adding pretests.

NR O1 O2

NR O3 X O4

Interrupted Time-Series Designs

In an interrupted time series design, the same
variable is measured repeatedly over time.

O1 O2 O3 O4 O5 X O6 O7 O8 O9 O10

A change in intercept or slope of the time series
is expected at the point in time where the mani-
pulation was delivered. For example, A. John
McSweeny studied the effects of the Cincinnati Bell
phone company instituting a charge of 20 cents per
call for local directory assistance. At the point in
time when this charge was added, a significant and
immediate drop in the number of local directory
assistance calls is visible in the data. This illustrates
how a change in intercept of a time series can be
used to judge the effect of a manipulation. A
change in slope can also be used to judge the effect
of a manipulation. For example, Julian Roberts
and Robert Geboyts studied the impact of the
reform of Canadian sexual assault law instituted in
order to increase reporting of sexual assault crimes.
They found a relatively flat slope in the years
before the reform (that is, the reported number of
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assaults remained fairly constant), whereas in the
years following the reform, a steady increase in the
reported number of assaults was observed.

A major threat to this type of design is
history—that is, other factors occurring at the
same time as the manipulation that may cause the
outcome under investigation. Several improve-
ments can be made to this design. A nonequivalent
control group may be added:

O1 O2 O3 O4 O5 X O6 O7 O8 O9 O10

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

A nonequivalent dependent variable may be
added:

OA1 OA2 OA3 OA4 OA5 X OA6 OA7 OA8 OA9 OA10

OB1 OB2 OA3 OB4 OB5 OB6 OB7 OB8 OA9 OA10

The manipulation may be implemented and
subsequently removed at a known time:

O1 O2 O3 O4 O5 X O6 O7 O8 O9 �X O10 O11 O12 O13

This may also be done multiple times, resulting
in a multiple replications design:

O1 O2 X O3 O4 �X O5 O6 X O7 O8 �X O9 O10

X O11 O12 �X O13 O14

Delivering the manipulation to two nonequiva-
lent groups at different times results in a switching
replications design:

O1 O2 O3 X O4 O5 O6 O7 O8 O9 O10 O11

O1 O2 O3 O4 O5 O6 O7 O8 X O9 O10 O11

Regression Discontinuity Design

In regression discontinuity designs, experimen-
tal manipulation is based on a cutoff score (C) on
an assignment variable (OA) measured before
manipulation.

OA C X O2

OA C O2

If the manipulation has an effect, then regres-
sion analysis of the data obtained from this design
should reveal a discontinuity at the cutoff score
corresponding to the size of the manipulation
effect. If the manipulation has no effect, the

regression line should be continuous. For example,
Charles Wilder studied how the institution of the
Medicaid program affected medical visits and
found, perhaps unsurprisingly, that household
income was positively correlated with medical vis-
its. More importantly, however, the data also
showed a dramatic increase in medical visits at the
cutoff score for Medicaid eligibility, which sup-
ports the inference that the Medicaid program
does indeed stimulate medical visits.

Differential attrition may cause a discontinuity
in the regression line that resembles an effect of
the manipulation and thus is a threat to internal
validity. History is a plausible threat to validity if
factors affecting the outcome occur only for study
units on one side of the cutoff.

Inferences

Randomized experiments allow for solid inferences
about a proposed causal relation of two variables.
However, randomization is often not practically
or ethically possible, making a quasi-experimental
design necessary. Although threats to internal valid-
ity are often highly plausible in quasi-experimental
designs, researchers can still draw valid causal infer-
ences if they identify plausible threats to internal
validity and select quasi-experimental designs that
address those threats. Often, the design adjustments
require elaborate changes, such as administering
and removing the intervention multiple times.
However, a small, simple change often can make
a large difference, such as adding a nonequivalent
dependent variable. In either case, causal inferences
are strengthened, which is the primary purpose of
experimentation.

Scott Baldwin and Arjan Berkeljon
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QUETELET’S INDEX

Quetelet’s Index, more commonly known as the
body mass index (BMI), is a measure of weight
relative to height. Originally developed by 19th-
century mathematician Lambert Adolphe Jacques
Quetelet, it is a standard measurement that is
widely used by health professionals and researchers
as an index of body fat. The formula used to calcu-
late this index is weight (in kilograms) divided by
height (in meters squared). Height in meters can be
calculated by dividing height in centimeters by
100. For example, a person who weighs 71 kilo-
grams and is 165 centimeters tall has a BMI of 26
[(71 kg)/(1.65 m)2 ¼ 26]. Alternatively, BMI can
be calculated by dividing weight (in pounds) by
height (in inches squared) multiplied by a con-
version factor of 703. For example, a person
who weighs 145 pounds and is 65 inches (or 50

500) tall has a BMI of 24 {[(145 lbs.)/(65 in.)2] ×
703 ¼ 24}.

Although the body mass index is not a direct
measure of adiposity (body fat), it is correlated with
direct measures of body fat, such as dual energy
x-ray absorptiometry and underwater (hydrostatic)
weighing. The advantages of using BMI as a proxy
for adiposity are that it is inexpensive, it is easy to
obtain, it does not require extensive training, and it
is simple to calculate relative to other methods.

Interpretation for Adults

BMI is often used to classify overweight and obe-
sity, but can be interpreted for the entire weight
spectrum. Typically, a person is considered under-
weight if he or she has a BMI of 18.5 or less and
normal weight between 18.5 and 24.9. A BMI of
25.0 to 29.9 is classified as overweight, and 30 or
above is considered obese. The obese category can
be further subdivided into Class I obesity (30.0 to
34.9), Class II obesity (35.0 to 39.9), and Class III
or extreme obesity (40 or above). Recent estimates
suggest that two thirds of the U.S. adult popula-
tion are classified as overweight according to these
categories, and nearly one third are obese.

Interpretation for Children and Adolescents

Although the calculation for BMI is the same for
adults and children, the interpretation differs. For
adults (aged 20 years and older), BMI is inter-
preted the same for both men and women using
the categories listed above. However, for children
and adolescents (aged 2 through 19 years), the
interpretation is based on age- and sex-specific per-
centiles, which reflects the fact that adiposity
changes with age and differs among boys and girls.
Therefore, it is not appropriate to use the BMI
categories for adults to interpret BMI and deter-
mine the weight category for children and adoles-
cents. BMI can be used to identify children and
adolescents who are either currently overweight or
at risk of becoming overweight, based on BMI-for-
age growth charts provided by the Centers for Dis-
ease Control and Prevention. After obtaining the
BMI using the method described above, this num-
ber is plotted on the BMI-for-age growth charts
for the appropriate sex to yield a percentile rank-
ing, which indicates how the child’s BMI compares
to children of the same age and sex. Although chil-
dren are usually not classified as obese, the current
recommendation is that BMI values that meet or
exceed the 95th percentile of the BMI growth
charts for their age and sex should be categorized
as overweight, and those who are in the 85th per-
centile to the 95th percentile are classified as at
risk of overweight. These growth curves are J-
shaped and were constructed to identify BMI
scores that show a trajectory toward overweight
(BMI ≥ 25) or obesity (BMI ≥30) in adulthood.
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