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observations can be different, and it is possible to
measure how different the observations are. Quantita-
tive variables can be either interval or ratio variables.
More and stronger statistical methods are available for
the analysis of quantitative variables than for nominal
and ordinal variables, regression analysis being the
most important such method.

Examples of quantitative variables are age, income,
and number of children in a household. The values of
such variables are measured with the help of a unit
of measurement. The unit commonly used for age is
a year. That way, one person can be 32 years old, and
another person can be 25 years old and therefore 7 years
younger than the other person. The unit for income is
often the dollar, but 1,000 is also used. Number of
children is a counting variable, and the common unit
is one child.

However, there is nothing about a variable such as
age that necessarily makes it a quantitative variable.
The complexity of this variable will depend on the way
in which it is measured. It could be measured using
the values young, middle aged, and old. Measured
this way, age is not a quantitative variable; it is an
ordinal variable. Also, it could be measured using the
values middle aged and not middle aged. That way it
would have to be considered a nominal variable. Thus,
in addition to the name of the variable, it is equally
necessary to know the way in which the variable is
measured.

A less important feature of a quantitative variable
is that it can be either discrete or continuous. A
discrete variable is one for which it is possible to find
two values of the variable such that there are no values
between the two. Counting variables are discrete; no
household can have between two and three children.
Similarly, a continuous variable is such that between
any two values, it is always possible to find another
value. Age, for example, is a continuous variable as
we move through time, even though it is often mea-
sured as the age at the previous birthday. Sometimes,
quantitative variables are called continuous variables.

Quantitative variables are better than nominal or
ordinal variables because they can be used for compu-
tations such as addition and multiplication. That opens
the possibilities for a large variety of statistical com-
putations and analyses. It is possible to find the mean
value of a quantitative variable, and it is possible to use
the variables for bivariate and multivariate analyses.

—Gudmund R. Iversen
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QUARTILE

Observations can be grouped into four equal-
sized sets according to their rank order. Each of the
four sets forms a quartile, which is a special case of
quantile.

—Tim Futing Liao

See also Quantile

QUASI-EXPERIMENT

Quasi-experiments manipulate presumed causes to
discover their effects, but the researcher does not assign
units to conditions randomly. Quasi-experiments are
necessary because it is not always possible to ran-
domize. Ethical constraints may preclude withhold-
ing effective treatments from needy people based on
chance without proper informed consent, those who
administer treatment may refuse to honor randomiza-
tion, or questions about program effects may arise after
a treatment was already implemented so that ran-
domization is impossible. So, quasi-experiments use
a combination of design features, practical logic, and
statistical analysis to show that the treatment may be a
plausible cause of the effect. The resulting causal infer-
ences are often more ambiguous than is the case with
randomized experiments. Nonrandomized experiment
is synonymous with quasi-experiment, and observa-
tional study and nonexperimental design often include
quasi-experiments as a subset.

KINDS OF QUASI-EXPERIMENTAL DESIGNS

Quasi-experimental designs include, but are not
limited to, (a) nonequivalent control group designs,
in which the outcomes of those exposed to two or
more conditions are studied but the experimenter
does not control assignment to conditions; (b) inter-
rupted time-series designs, in which many consec-
utive observations over time (prototypically 100) are
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available on an outcome, and treatment is introduced
in the midst of those observations to demonstrate its
impact on the outcome through a discontinuity in the
time series after treatment; (c) regression discontinuity
designs, in which the experimenter uses a cutoff score
on a measured variable to determine eligibility for treat-
ment, and an effect is observed if the regression line of
the assignment variable on outcome for the treatment
group is discontinuous from that of the comparison
group; and (d) single-case designs, in which one partic-
ipant is observed repeatedly over time (usually on fewer
occasions than in the time series) while the scheduling
and dose of treatment are manipulated to demonstrate
that treatment controls outcome.

In such designs, treatment is manipulated, and out-
come is then observed. Two other classes of designs
are sometimes included as quasi-experiments, even
though the cause is not manipulated. In (e) case con-
trol designs, a group with an outcome of interest is
compared to a group without that outcome to see
if they differ retrospectively in exposure to possible
causes; and in (f) correlational designs, observations on
possible treatments and outcomes are observed simul-
taneously, often with a survey, to see if they are related.
Because these designs do not ensure that cause pre-
cedes effect, as it must logically do, they usually yield
more equivocal causal inferences.

HISTORICAL DEVELOPMENT

Most experiments conducted prior to the 1920s
were quasi-experiments. For example, Lind (1753)
described a quasi-experimental comparison of six
medical treatments for scurvy; around 1850, epi-
demiologists used case control methods to identify
contaminated water supplies as the cause of cholera
in London; and in 1898, Triplett used a nonequivalent
control group design to show that the presence of an
audience and competitors improved the performance
of bicyclists.

In 1963, Campbell and Stanley coined the term
quasi-experiment to describe this class of designs.
Campbell and his colleagues (Cook & Campbell, 1979;
Shadish, Cook, & Campbell, 2002) extended the
theory and practice of these designs in three ways.
First, they described a larger number of these designs.
For example, some quasi-experimental designs are
inherently longitudinal (e.g., time series, single-case
designs), observing participants over time; but other
designs can be made longitudinal by adding more

observations before or after treatment. Similarly, more
than one treatment or control group can be used,
and the designs can be combined, as when adding a
nonequivalent control group to a time series.

Second, Campbell developed a logic to evaluate
the quality of causal inferences resulting from quasi-
experimental designs—a validity typology elabo-
rated in Cook and Campbell (1979) and Shadish et al.
(2002). The typology includes four validity types and
threats to validity for each type. Threats are com-
mon reasons why researchers may be wrong about
the causal inferences they draw. Statistical conclu-
sion validity concerns inferences about how much
presumed cause and effect covary; an example of a
threat is low statistical power. Internal valid-
ity concerns inferences that observed covariation is
due to the treatment causing the outcome; a sam-
ple threat is history (extraneous events that could
also cause the effect). Construct validity concerns
inferences about higher-order constructs that research
operations represent; a sample threat is experimenter
expectancy effects, whereby participants react to
what they believe the experimenter wants to observe
rather than to the intended treatment. External
validity concerns inferences about whether the cause-
effect relationship holds over variation in people, set-
tings, treatment variables, and measurement variables;
threats include interactions of the treatment with other
features of the design that produce unique effects that
would not be observed otherwise.

Third, Campbell addressed threats to validity using
design features—things a researcher can manipulate
to prevent a threat from occurring or to diagnose
its presence and impact on study results (Table 1).
For example, suppose maturation (normal develop-
ment over time) is an anticipated threat to validity
because it could cause a pretest-posttest change like
that attributed to treatment. The inclusion of sev-
eral consecutive pretests before treatment can indicate
whether the rate of maturation before treatment is simi-
lar to the rate of change during and after treatment. If so,
maturation is a threat. All quasi-experiments are com-
binations of these design features, chosen to diagnose
or rule out threats to validity in a particular con-
text. Campbell was skeptical about adjusting threats
statistically after they have already occurred because
statistical adjustments require making assumptions that
are usually dubious or impossible to test.

Other scholars during this time were also interested
in causal inferences in quasi-experiments, particularly
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Table 1 Design Elements Used in Constructing Quasi-Experiments

Assignment (Control of assignment strategies to increase group comparability)

• Cutoff-Based Assignment. Controlled assignment to conditions based on one or more fully measured covariates. This yields an unbiased
effect estimate.

• Other Nonrandom Assignment. Various forms of “haphazard” assignment that sometimes approximate randomization (e.g., alternating
assignment in a two-condition quasi-experiment whereby every other unit is assigned to one condition, etc.).

• Matching and Stratifying. Efforts to create groups equivalent on observed covariates in ways that are stable, do not lead to regression
artifacts, and are correlated with the outcome.

Measurement (Use of measures to learn whether threats to causal inference actually operate)

Posttest Observations

• Nonequivalent Dependent Variables. Measures that are not sensitive to the causal forces of the treatment, but are sensitive to all or
most of the confounding causal forces that might lead to false conclusions about treatment effects (if such measures show no effect,
but the outcome measures do show an effect, the causal inference is bolstered because it is less likely to be due to the confounds).

• Multiple Substantive Posttests. Used to assess whether the treatment affects a complex pattern of theoretically predicted outcomes.

Pretest Observations

• Single Pretest. A pretreatment measure on the outcome variable, useful to help diagnose selection bias.
• Retrospective Pretest. Reconstructed pretests when actual pretests are not feasible—by itself, a very weak design feature, but sometimes

better than nothing.
• Proxy Pretest. When a true pretest is not feasible, a pretest on a variable correlated with the outcome—-often weak by itself.
• Multiple Pretest Time Points on the Outcome. Helps reveal pretreatment trends or regression artifacts that might complicate causal

inference.
• Pretests on Independent Samples. When a pretest is not feasible on the treated sample, one is obtained from a randomly equivalent

sample.
• Complex Predictions Such as Predicted Interaction. Successfully predicted interactions lend support to causal inference because

alternative explanations become less plausible.
• Measurement of Threats to Internal Validity. Help diagnose the presence of specific threats to the inference that A caused B, such as

whether units actively sought out additional treatments outside the experiment.

Comparison Groups [Selecting comparisons that are “less nonequivalent” or that bracket the treatment group at the pretest(s)]

• Single Nonequivalent Groups. Compared to studies without control groups, using a nonequivalent control group helps identify many
plausible threats to validity.

• Multiple Nonequivalent Groups. Serve several functions. For instance, groups are selected that are as similar as possible to the treated
group, but at least one outperforms it initially and at least one underperforms it, thus bracketing the treated group.

• Cohorts. Comparison groups chosen from the same institution in a different cycle (e.g., sibling controls in families or last year’s students
in schools).

• Internal (vs. External) Controls. Plausibly chosen from within the same population (e.g., within the same school rather than from a
different school).

Treatment (Manipulations of the treatment to demonstrate that treatment variability affects outcome variability)

• Removed Treatments. Shows that an effect diminishes if treatment is removed.
• Repeated Treatments. Reintroduces treatments after they have been removed from some group—common in laboratory sciences or

where treatments have short-term effects.
• Switching Replications. Reverses treatment and control group roles so that one group is the control while the other receives treatment,

but the controls receive treatment later while the original treatment group receives no further treatment or has treatment removed.
• Reversed Treatments. Provides a conceptually similar treatment that reverses an effect (e.g., reducing access to a computer for some

students but increasing access for others).
• Dosage Variation. Demonstrates that outcome responds systematically to different levels of treatment.
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William G. Cochran in statistics, James J. Heckman
in economics, and Sir Austin Bradford Hill in epi-
demiology. However, Campbell’s work was unique
for its extensive emphasis on design rather than sta-
tistical analysis, its theory of how to evaluate causal
inferences, and its sustained development of quasi-
experimental theory and method over four decades.

EXAMPLES

In 1966, the Canadian province of Ontario initi-
ated a formal program for the screening and treat-
ment of infants born with phenylketonuria (PKU) to
prevent retardation. After the start of the program,
44 infants born with PKU experienced no retarda-
tion, and three did. Of these, two were missed by the
screening program (Webb et al., 1973). Statistics from
prior years suggested a much higher rate of retarda-
tion attributable to PKU. Although this study lacked
a control group, the authors concluded that the pro-
gram successfully treated PKU infants. Based on such
results, this program was widely adopted in Canada
and the United States. This study was a pretest-posttest
quasi-experiment with no control group.

In July 1982, Arizona implemented legislation man-
dating severe penalties for driving while intoxicated; a
comparison of monthly results from January 1976 to
July 1982 (the control condition) with monthly totals
between July 1982 and May 1984 (the treatment condi-
tion) found a decrease in traffic fatalities after the new
law was implemented. A similar finding occurred in
monthly data trends in San Diego after January 1982,
when that city implemented a California law that also
penalized intoxicated drivers. In a control time series in
El Paso, Texas, a city that had no relevant change in its
driving laws during this period, monthly fatality trends
showed no comparable changes during the months of
either January or July 1982. The changes in trends
over time in both San Diego and Arizona, compared
to the absence of similar trends in El Paso, suggest
that the new laws reduced fatalities (West, Hepworth,
McCall, & Reich, 1989). This study was an interrupted
time-series quasi-experiment.

STATISTICS AND QUASI-EXPERIMENTAL
DESIGN

Statisticians such as Paul Holland, Paul Rosenbaum,
and Donald Rubin emphasize the need to measure
what would have happened to treatment participants

without treatment (the counterfactual) and focus on
statistics that can improve estimates of the counter-
factual without randomization. A central method uses
propensity scores, a predicted probability of group
membership obtained from logistic regression of
actual group membership on predictors of outcome
or of how participants got into treatment. Matching,
stratifying, or covarying on the propensity score can
balance nonequivalent groups on those predictors, but
those methods cannot balance groups for unobserved
variables, so hidden bias may remain. Hence, these
statisticians have developed sensitivity analyses to
measure how much hidden bias would be necessary
to change an effect in important ways.

Economists such as James Heckman and his col-
leagues have pursued another development, selec-
tion bias modeling, which aims to remove hidden
bias from quasi-experiments by modeling the selec-
tion process. Unfortunately, these models have not
been very successful in matching results from ran-
domized experiments. Most recently, economists have
improved results by combining selection bias mod-
els with propensity scores. This topic continues to
develop.

A third development is the use of structural
equation modeling (SEM) to study causal relation-
ships in quasi-experiments; this effort has also been
only partly successful (Bollen, 1989). The capacity of
SEM to model latent variables can sometimes reduce
bias caused by unreliability of measurement, but its
capacity to generate unbiased effect estimates is ham-
strung by the same lack of knowledge of selection that
thwarts selection bias models. A related but newer lit-
erature on causality is promising, using directed graphs
to help understand the issues (Pearl, 2000).

CONCLUSION

Quasi-experiments are rarely able to provide the
confidence about causal inference that randomized
experiments can provide, and overreliance on quasi-
experiments in some areas is a serious problem.
Nevertheless, three important factors have created con-
ditions to improve quasi-experiments. First, extensive
practical experience with quasi-experimental designs
has provided a database from which we can con-
duct empirical studies of the theory (Shadish, 2000).
Second, after decades of focus on randomized designs,
statisticians and economists have turned their atten-
tion to improving quasi-experimental designs. Third,
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the computer revolution provided both theorists and
practitioners with increased capacity to invent and
use more sophisticated and computationally intense
methods for improving quasi-experiments.

—William R. Shadish and M. H. Clark
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QUESTIONNAIRE

All scientists use “tools” to measure the phenom-
ena of interest to their disciplines, and social sci-
entists are no exception. Thus, just as a telescope
serves astronomers and an electron microscope serves
microbiologists, the questionnaire serves many social
scientists as their primary measurement tool. The chal-
lenge to these researchers is to calibrate a questionnaire
that will gather data as accurately and efficiently as
possible.

From a “total error” perspective, a poorly con-
structed questionnaire can contribute bias and vari-
ance to the data that are gathered (cf. Groves, 1989).
In particular, poorly worded, poorly ordered, and/or
poorly formatted questions can lead to significant mea-
surement error in the form of both bias and variance,
and/or can lead to significant item nonresponse error
in the form of bias.

One of the defining characteristics of a question-
naire is whether it is for a self-administered survey,
as in a mail survey or an internet survey, or whether
it is to be interviewer-administered, as in a telephone
survey or in-person survey. If the questionnaire is self-
administered, then the “end user” is the respondent.
In these cases, all instructions required to complete
the questionnaire accurately must be stated clearly and
explicitly within the questionnaire itself. Or, in the
case of computerized self-administered questionnaires,
instructions can be presented via audio recordings.
There are myriad other design features that are affected
by whether the questionnaire is self-administered or
interviewer-administered; for detailed information, see
Dillman (2000).

In creating a particular questionnaire item, there
are four structural factors to consider: (a) the ques-
tion stem wording; (b) whether the response option(s)
will be open-end or closed-end; and, if closed-end,
whether they are (c) forced-choice and/or (d) balanced.
In wording the question stem (i.e., the interrogative
being asked), use as few and as simple words possible
to convey the meaning of the construct being mea-
sured. In operationalizing the construct through this
wording, the researcher also must keep in mind the
educational level of the respondents. Whenever a ques-
tionnaire is self-administered, respondents’ literacy
must be considered.


