Instituto Superior de Economia e Gestão
BsC in Economics, Finance and Management

Mathematics II - 1st Semester - 2023/2024

Regular Assessment - 4th of January 2024
Duration: $(120+\varepsilon)$ minutes, $|\varepsilon| \leq 30$
Version C
Name:
Student ID \#: \qquad

Part I

- Complete the following sentences in order to obtain true propositions. The items are independent from each other.
- There is no need to justify your answers.
(a) (4) If $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear map such that $\operatorname{det} A=0$ and $A(1,-2)=(-2,4)$, then the eigenvalues of A are \qquad In particular, A is not
(b) (7) The (maximal) domain of $f: D_{f} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\frac{\ln \left(x-y^{2}-1\right)}{\sqrt{y}}
$$

is the set $D_{f}=$ \qquad and its planar representation in the cartesian plane (x, y) is:
(c) (4) The symmetric matrix associated to the quadratic form

$$
Q(x, y, z)=3 x^{2}+\ldots x z-y^{2}-5 y z
$$

is

$$
\left(\begin{array}{ccc}
3 & \ldots . . & 2 \\
\ldots . . & \ldots . . & \ldots \\
2 & \ldots . & \ldots
\end{array}\right)
$$

(d) (7) With respect to the set

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}:|x-5|<1 \wedge 4 \leq y<7\right\} \cup\{(0,0)\}
$$

we may conclude that $(0,0)$ is not a/an \qquad point of Ω,

$$
\bar{\Omega}=c l(\Omega)=
$$

\qquad and

$$
\iint_{\Omega} 1 \quad \mathrm{dx} \mathrm{dy}=
$$

(e) (6) The continuous map $f(x, y)=\frac{1}{x^{2}+y^{2}}$ defined in $\mathbb{R}^{2} \backslash\{(0,0)\}$ has a global maximum and a global minimum when restricted to the set

$$
M=\left\{(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}:\right.
$$

\qquad
This is a consequence of \qquad 's Theorem (since f is continuous and M is compact).
(f) (4) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \backslash\{3\} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=x+y^{2} \quad \text { and } \quad g(x)=2+\frac{5}{x-3}
$$

Then

$$
\lim _{(x, y) \rightarrow(-1,3)}[g \circ f(x, y)]=\ldots \ldots \ldots \ldots
$$

(g) (4) If $u_{n}=\left(\left(1+\frac{3}{n}\right)^{n}, \frac{\pi}{n}\right), n \in \mathbb{N}$ and $f(x, y)=\ln x+\cos y$, then

$$
\lim _{n \rightarrow+\infty} f\left(u_{n}\right)=\ldots \ldots
$$

(h) (6) The map $f(x, y)=x^{5} \sqrt{y}$ is positively homegeneous of degree \qquad In this case, when $y>0$, the Euler identity says that (compute explicitly the derivatives)
(i) (6) If $f(x, y)=x^{2} y, x(t)=e^{t}$ and $y(t)=\sin t^{2}$, by the Chain rule we get:

$$
\frac{d f}{d t}(t)=
$$

(j) (4) The gradient vector of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $\left(2 x y^{3}, 3 x^{2} y^{2}-\cos y\right)$. If $f(x, y)$ does not have constant terms in both components, then

$$
f(x, y)=
$$

\qquad
(k) (4) With respect to the C^{2} map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we know that $\nabla f(3,2)=(0,0)$ and

$$
H_{f}(3,2)=\left(\begin{array}{cc}
\ldots \ldots & 0 \\
0 & \ldots \ldots .
\end{array}\right)
$$

Then, $f(3,2)$ is a local maximum of f.
(l) (4) With respect to a $C^{2} \operatorname{map} f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we know that $\frac{\partial^{3} f}{\partial x^{2} \partial y}(x, y)=5 x^{6} y^{7}$. Then we may conclude that:

$$
\frac{\partial^{4} f}{\partial x^{2} \partial y^{2}}(x, y)=
$$

(m) (5) The Taylor expansion of order 2 of $f(x, y)=e^{-y}$ at the point $(0,0)$ is given by
(n) (4) The following equality holds
(o) (4) The map $y(x)=5 e^{-3 x}, x \in \mathbb{R}$, is a solution of the IVP $\left\{\begin{array}{l}\dot{y}=\ldots \ldots \\ y(\ldots \ldots)=\frac{5}{e^{3}}\end{array}\right.$.
(p) (6) The absolute maximum of $f(x, y)=y^{2}$ when restricted to the set

$$
M=\left\{(x, y) \in \mathbb{R}^{2}:(x-5)^{2}+y^{2}=\ldots . .\right\}
$$

occurs at $(x, y)=(\ldots \ldots, 2)$. The Lagrangian map associated to the problem under consideration is:

$$
\mathcal{L}(x, y, \lambda)=
$$

\qquad
(q) (6) The logistic law (associated to a given population of size p that depends on the time $t \geq 0$) states that

$$
p^{\prime}=a p-b p^{2}, \quad a>b \in \mathbb{R}_{0}^{+}
$$

If $p(0)=10, a=1$ and $b=0.1$, then the solution of the previous differential equation is monotonic
If $a=3, b=0$ and $p(0)=10$, the solution of the previous differential equation is
\qquad where $t \in \mathbb{R}_{0}^{+}$.
(r) (5) Assuming that y depends on x, the graph of the solution of the IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}=-4 y \\
y(0)=-1 \\
y(\pi / 4)=0
\end{array}\right.
$$

is

Part II

- Give your answers in exact form. For example, $\frac{\pi}{3}$ is an exact number while 1.047 is a decimal approximation for the same number.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solve a problem, you may get little or no credit for it, even if your answer is correct.

1. For $\alpha \in \mathbb{R}_{0}^{+} \backslash\{1\}$, consider the following matrix $\mathbf{A}=\left[\begin{array}{ccc}\alpha & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(a) Classify the quadratic form $Q(X)=X^{T} \mathbf{A} X, X \in \mathbb{R}^{3}$, as function of α.
(b) Find the value of α for which 2 is an eigenvalue of \mathbf{A}. Compute the eigenvectors associated to this eigenvalue.
2. Consider the map $f(x, y)=\left\{\begin{array}{ll}\frac{x(x+y-1)}{\sqrt{x^{2}+(y-1)^{2}}} & \text { if }(x, y) \neq(0,1) \\ 0 & \text { if }(x, y)=(0,1)\end{array}\right.$.
(a) Show that f is continuous in $(0,1)$.
(b) Find the directions $\left(v_{1}, v_{2}\right)$ along with there exists directional derivative of f at $(0,1)$. In these cases, compute it.
3. Let $g: \mathbb{R} \rightarrow \mathbb{R}^{+}$be a differentiable map such that $g^{\prime}(1)=0$. Identify and classify all critical points of

$$
f(x, y)=(1-x) y+\ln (g(x))
$$

4. Consider the set $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1 \wedge x \leq y \leq e^{x}\right\}$.
(a) Represent the set Ω in the cartesian plane (x, y).
(b) Compute

$$
\iint_{\Omega}\left(y^{2}+x\right) \mathrm{dx} \mathrm{dy} .
$$

5. For $\alpha \in \mathbb{R}$, consider the following differential equation of order 2 :

$$
\begin{equation*}
y^{\prime \prime}(x)-\alpha y(x)=5 \sin (2 x) \tag{1}
\end{equation*}
$$

for which $y(x)=\sin (2 x)$ is a particular solution.
(a) Show that $\alpha=-9$.
(b) Write the general solution of (1), identifying its maximal domain.

Credits:

I	II.1(a)	II.1(b)	II.2(a)	II.2(b)	II.3	II.4(a)	II.4(b)	II.5(a)	II.5(b)
90	10	10	10	20	15	5	15	10	15

