STATISTICAL METHODS

Master in Industrial Management,
Operations and Sustainability (MIMOS)

2nd year/1st Semester 2025/2026

CONTACT

Professor: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

https://doity.com.br/estatistica-aplicada-a-nutricao

https://basiccode.com.br/produto/informatica-basica/

PROGRAM

Fundamental Concepts of Statistics

Descriptive Data
Analysis

Introduction to Inferential Analysis

Parametric
Hypothesis Testing

Non-Parametric
Hypothesis Testing

6 Linear Regression Analysis

EXERCISE 1.36

1.36 The following table shows the ages of competitors in a charity tennis event in Rome:

Age	Percent
18–24	18.26
25-34	16.25
35-44	25.88
45-54	19.26
55+	20.35

- $a. \ \ Construct\ a\ relative\ cumulative\ frequency\ distribution.$
- b. What percent of competitors were under the age of 35?
- c. What percent of competitors were 45 or older?

EXERCISE 1.36 A): SOLUTION

a) Relative cumulative frequency distribution

To get the **cumulative percentage**, we add the percentages successively:

Age	Percent	Cumulative Percent
18–24	18.26	18.26
25–34	16.25	18.26 + 16.25 = 34.51
35–44	25.88	34.51 + 25.88 = 60.39
45–54	19.26	60.39 + 19.26 = 79.65
55+	20.35	79.65 + 20.35 = 100.00

The cumulative percentage column is the relative cumulative frequency (in percentage).

EXERCISE 1.36 B): SOLUTION

b) Percent of competitors under the age of 35

- Competitors under 35 include 18-24 and 25-34.
- Add the percentages:

$$18.26 + 16.25 = 34.51\%$$

34.51% of competitors were under 35.

EXERCISE 1.36 C): SOLUTION

- c) Percent of competitors 45 or older
- Competitors 45 or older include 45–54 and 55+.
- Add the percentages:

$$19.26 + 20.35 = 39.61\%$$

39.61% of competitors were 45 or older.

DESCRIBING DATA NUMERICALLY

Measures:

- Central and Non-Central Location / Tendency
- Dispersion / Variation
- Skewness
- Kurtosis

MEASURES OF TENDENCY AND VARIATION

MEASURES OF CENTRAL TENDENCY

ARITHMETIC MEAN

The arithmetic mean (mean) is the most common measure of central tendency

– For a population of N values:

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$
Population values
Population size

– For a sample of size n:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 Observed values
Sample size

ARITHMETIC MEAN: EXAMPLES

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

$$\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$$

MEDIAN

 In an ordered list, the median is the "middle" number (50% above, 50% below)

Not affected by extreme values

FINDING THE MEDIAN

The location of the median:

Median position =
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers
- Note that $\frac{n+1}{2}$ is not the value of the median, only the position of the median in the ranked data

CALCULATING THE MEDIAN: EXAMPLES

Formula to Find Median Position

Position =
$$\frac{n+1}{2}$$

- n = number of observations
- If **Position is integer** → Median = value at that position
- If **Position is not integer** → Median = average of values at floor and ceil(Position)

Examples

Example 1 - Position is integer

• Data: 2, 4, 6, 8, 10 (n=5)

$$Position = \frac{5+1}{2} = 3$$
 (integer)

Median = 3rd value = 6

Example 2 - Position is not integer

Data: 3, 5, 8, 12, 15, 18 (n = 6)

$$Position = \frac{6+1}{2} = 3.5 \quad (not integer)$$

$$ext{Median} = rac{3 ext{rd value} + 4 ext{th value}}{2} = rac{8+12}{2} = 10$$

WHICH MEASURE OF LOCATION IS THE "BEST"?

- Mean is generally used, unless extreme values (outliers) exist ...
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers

MODE

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may be no mode
- There may be several modes

DISTRIBUTIONS BY MODE

- 1 Amodal Distribution (No Mode)
- **Definition:** No value repeats → no mode
- Example: 2, 3, 5, 7, 11
- Unimodal Distribution (One Mode)
- **Definition:** One value appears most frequently
- Example: 1, 2, 2, 3, 4 → Mode = 2
- Bimodal Distribution (Two Modes)
- Definition: Two values appear with the same highest frequency
- Example: 1, 2, 2, 3, 3, 4 → Modes = 2, 3
- Multimodal Distribution (More than Two Modes)
- Definition: More than two values appear with the same highest frequency
- Example: 1, 1, 2, 2, 3, 3, $4 \rightarrow$ Modes = 1, 2, 3

REVIEW EXAMPLE

REVIEW EXAMPLE: SUMMARY STATISTICS

House Prices:

\$2,000,000

500,000

300,000

100,000

100,000

Sum 3,000,000

• Mean: $\left(\frac{\$3,000,000}{5}\right)$

= \$600,000

Median: middle value of ranked data

= \$300,000

Mode: most frequent value

= \$100,000

QUANTILES: DEFINITION

- What are Quantiles?
- Quantiles are values that divide a dataset into equal parts.
- Special cases:
 - Quartiles → Q1, Q2, Q3, Q4 (divide data into 4 equal parts)
 - Median = Q2
 - Deciles → D1, D2, ..., D10 (divide data into 10 equal parts)
 - Median = D5
 - Percentiles → P1, P2, ..., P100 (divide data into 100 equal parts)
 - Median = P50

QUANTILES: CALCULATION STEPS (NEWBOLD METHOD)

- Steps to Calculate a Quantile (Newbold Method)
- 1. Order the data (ascending).
- 2. Calculate the position:

Position =
$$\alpha \cdot (n+1)$$

- n = number of observations
- α = proportion of the quantile (e.g., 0.25 for Q1/P25, 0.50 for median/P50)
- 3. Determine the quantile value:
- If Position is integer:

• If Position is not integer:

$$\text{Quantile} = \frac{\text{value at floor}(\text{Position}) + \text{value at ceil}(\text{Position})}{2}$$

QUANTILES: EXAMPLES

Examples

Example 1 – Position is integer (Median / Q2 / D5 / P50):

Data: 3, 5, 8, 12, 15, 18, 20 (n=7)

Position =
$$0.5 \cdot (7+1) = 4$$
 | Quantile = 4th value = 12

Example 2 - Position is not integer (Q1 / P25):

Data: 3, 5, 8, 12, 15, 18, 20, 25 (n = 8)

Position =
$$0.25 \cdot (8+1) = 2.25$$
 | Quantile = $(5+8)/2 = 6.5$

Note

- Other formulas exist (e.g., SPSS, Excel) \rightarrow results may **differ slightly**.
- Key: choose **one method** and apply consistently.

PERCENTILES AND QUARTILES

Percentiles and Quartiles

To find percentiles and quartiles, data must first be arranged in order from the smallest to the largest values.

The Pth percentile is a value such that approximately P% of the observations are at or below that number. Percentiles separate large ordered data sets into 100ths. The 50th percentile is the median.

The *P*th percentile is found as follows:

Pth percentile = value located in the (P/100)(n + 1)th ordered position (2.6)

Quartiles are descriptive measures that separate large data sets into four quarters. The **first quartile**, Q_1 , (or 25th *percentile*) separates approximately the smallest 25% of the data from the remainder of the data. The **second quartile**, Q_2 , (or 50th *percentile*) is the median (see Equation 2.3).

PERCENTILES AND QUARTILES

- Percentiles and Quartiles indicate the position of a value relative to the entire set of data
- Generally used to describe large data sets
- Example: An IQ score at the 90th percentile means that 10% of the population has a higher IQ score and 90% have a lower IQ score.

$$P^{\text{th}}$$
 percentile = value located in the $\left(\frac{P}{100}\right)(n+1)^{\text{th}}$ ordered position

QUARTILES

 Quartiles split the ranked data into 4 segments with an equal number of values per segment (note that the widths of the segments may be different)

25%	25%	25%	25%
1	1	1]
Q	Q	Q	Q_3

- The first quartile, Q_1 , is the value for which 25% of the observations are smaller and 75% are larger
- Q_2 is the same as the median (50% are smaller, 50% are larger)
- Only 25% of the observations are greater than the third quartile

QUARTILE FORMULAS

Position =
$$\alpha \cdot (n+1)$$

Find a quartile by determining the value in the appropriate position in the ranked data, where

First quartile position:

$$Q_1 = 0.25(n+1)$$

Second quartile position: (the median position)

$$Q_2 = 0.50(n+1)$$

Third quartile position:

$$Q_3 = 0.75(n+1)$$

where *n* is the number of observed values

QUARTILE: EXAMPLE

Example: Find the first quartile

Sample Ranked Data: 11 12 13 16 16 17 18 21 22

$$(n=9)$$

 Q_1 = is in the 0.25(9+1)=2.5 position of the ranked data

so use the value half way between the 2^{nd} and 3^{rd} values,

so
$$Q_1 = 12.5$$

FIVE-NUMBER SUMMARY

The **five-number summary** refers to five descriptive measures:

minimum

first quartile

median

third quartile

maximum

 $minimum < Q_1 < median < Q_3 < maximum$

EXERCISE 2.6

- 2.6 During the last 3 years Consolidated Oil Company expanded its gasoline stations into convenience food stores (CFSs) in an attempt to increase total sales revenue. The daily sales (in hundreds of dollars) from a random sample of 10 weekdays from one of its stores are:
 - 6 8 10 12 14 9 11 7 13 11
 - a. Find the mean, median and mode for this store.
 - b. Find the five-number summary.

Given data (daily sales in hundreds of dollars): 6, 8, 10, 12, 14, 9, 11, 7, 13, 11

- a. Mean, Median, and Mode
- Order the data (ascending): 6, 7, 8, 9, 10, 11, 11, 12, 13, 14
- Mean:

$$ar{x}=rac{ ext{sum of all values}}{n}$$
 $ar{x}=rac{6+7+8+9+10+11+11+12+13+14}{10}=rac{101}{10}=10.1$

Mean = 10.1 (hundreds of dollars)

Answer:

- a. Mean, Median, and Mode
- Order the data (ascending): 6, 7, 8, 9, 10, 11, 11, 12, 13, 14
- **Median:** Number of observations n = 10 (even), so:

$$ext{Median} = rac{5 ext{th value} + 6 ext{th value}}{2} = rac{10+11}{2} = 10.5$$

Mode:

Most frequent value = 11 (appears twice)

Answer:

b. Five-number summary

• Order the data (ascending): 6, 7, 8, 9, 10, 11, 11, 12, 13, 14

Q1: lpha=0.25

Position =
$$0.25 \cdot 11 = 2.75$$

• Not integer → take average of 2nd and 3rd values:

$$Q1 = \frac{x_2 + x_3}{2} = \frac{7 + 8}{2} = 7.5$$

Q3: $\alpha=0.75$

Position =
$$0.75 \cdot 11 = 8.25$$

• Not integer → average of 8th and 9th values:

$$Q3 = rac{x_8 + x_9}{2} \bigodot rac{12 + 13}{2} = 12.5$$

Five-number summary using the "average for non-integer position" method:

$$Minimum = 6$$
, $Q1 = 7.5$, $Median = 10.5$, $Q3 = 12.5$, $Maximum = 14$

- b. Five-number summary: Alternative solution (Both methods are correct!)
- Order the data (ascending): 6, 7, 8, 9, 10, 11, 11, 12, 13, 14
 - Ordered data: 6, 7, 8, 9, 10, 11, 11, 12, 13, 14
 - Q2 (Median) = 10.5
 - **Q1:** median of lower half (first 5 values: 6, 7, 8, 9, 10)
 - Middle value = $8 \rightarrow Q1 = 8$
 - Q3: median of upper half (last 5 values: 11, 11, 12, 13, 14)
 - Middle value = $12 \rightarrow Q3 = 12$

Five-number summary:

Minimum = 6, Q1 = 8, Median = 10.5, Q3 = 12, Maximum = 14

MEASURES OF VARIABILITY

RANGE

- Simplest measure of variation
- Difference between the largest and the smallest observations:

Range =
$$X_{\text{largest}} - X_{\text{smallest}}$$

Example:

DISADVANTAGES OF THE RANGE

Ignores the way in which data are distributed

Range =
$$12 - 7 = 5$$

Range =
$$12 - 7 = 5$$

Sensitive to outliers

Range =
$$5 - 1 = 4$$

$$1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 120$$

Range =
$$120 - 1 = 119$$

INTERQUARTILE RANGE

- Can eliminate some outlier problems by using the interquartile range
- Eliminate high-and low-valued observations and calculate the range of the middle 50% of the data
- Interquartile range = 3rd quartile 1st quartile

$$IQR = Q_3 - Q_1$$

INTERQUARTILE RANGE

- The interquartile range (IQR) measures the spread in the middle 50% of the data
- Defined as the difference between the observation at the third quartile and the observation at the first quartile

$$IQR = Q_3 - Q_1$$

POPULATION VARIANCE

- Average of squared deviations of values from the mean

- Population variance:
$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

Where

 μ = population mean

N =population size

 $x_i = i^{\text{th}}$ value of the variable x

SAMPLE VARIANCE

- Average (approximately) of squared deviations of values from the mean
 - Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Where

 \overline{x} = arithmetic mean

n = sample size

 $x_i = i^{\text{th}}$ value of the variable x

SAMPLE VARIANCE – TWO FORMULAS

Formulas (for a sample)

1. Sample Variance (divide by n):

$$s_n^2 = rac{\sum (x_i - ar{x})^2}{n}$$

- Correct formula for a sample.
- Simple calculation, but on average gives a slightly smaller value than the true population variance.
- 2. Sample Variance (divide by n-1):

$$s_{n-1}^2 = rac{\sum (x_i - ar{x})^2}{n-1}$$

- Also correct for a sample.
- Preferred formula → provides an unbiased estimate of the population variance.

Note

- Both formulas are correct for sample variance.
- The version with n-1 is standard in statistics because it adjusts for the estimation of the mean from the sample.

POPULATION STANDARD DEVIATION

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

SAMPLE STANDARD DEVIATION

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

SAMPLE STANDARD DEVIATION: EXAMPLE

Sample Data
$$(x_i)$$
: 10 12 14 15 17 18 18 24
$$n = 8 \qquad \text{Mean} = \overline{x} = 16$$

$$s = \sqrt{\frac{(10 - \overline{x})^2 + (12 - \overline{x})^2 + (14 - \overline{x})^2 + \dots + (24 - \overline{x})^2}{n - 1}}$$

$$= \sqrt{\frac{(10 - 16)^2 + (12 - 16)^2 + (14 - 16)^2 + \dots + (24 - 16)^2}{8 - 1}}$$

$$= \sqrt{\frac{130}{7}} = \boxed{4.3095} \Longrightarrow \text{A measure of the "average" scatter around the mean}$$

COMPARING STANDARD DEVIATIONS

MEASURING VARIATION

ADVANTAGES OF VARIANCE AND STANDARD DEVIATION

- Each value in the data set is used in the calculation
- Values far from the mean are given extra weight (because deviations from the mean are squared)

COEFFICIENT OF VARIATION

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

Population coefficient of variation:

$$CV = \left(\frac{\sigma}{\mu}\right) \cdot 100\%$$

Sample coefficient of variation:

$$CV = \left(\frac{s}{\overline{x}}\right) \cdot 100\%$$

COMPARING COEFFICIENT OF VARIATION

- Stock A:
 - Average price last year = \$50
 - Standard deviation = \$5

$$CV_A = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = \boxed{10\%}$$

- Stock B:
 - Average price last year = \$100
 - Standard deviation = \$5

$$CV_B = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% \neq 5\%$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

SKEWNESS VS HISTOGRAM

Right-skewed (positively skewed):

- The tail of the distribution extends more to the right (higher values).
- Most data are concentrated on the left.
- Skewness > 0

Left-skewed (negatively skewed):

- The tail of the distribution extends more to the left (lower values).
- Most data are concentrated on the right.
- Skewness < 0

SKEWNESS VS BOXPLOT

IDENTIFYING SKEWNESS USING MEAN, MEDIAN, AND MODE

- Skewness can be identified by the relationship between Mode, Median, and Mean.
- Mean > Median > Mode → positively skewed (right-skewed)
- Mean < Median < Mode → negatively skewed (left-skewed)
- Mean ≈ Median ≈ Mode → approximately symmetric

Left-Skewed Mean < Median < Mode Mode = Mean = Median

Symmetric

Right-Skewed

SKEWNESS MEASURES: HOW TO IDENTIFY SKEWNESS WITH COEFFICIENTS

Measure	Formula (simplified)	Interpretation
Pearson's Coefficient of Skewness	$Sk_P=rac{ar{x}- ext{Mode}}{s}$ or $Sk_P=rac{3(ar{x}- ext{Median})}{s}$	> 0 → right-skewed < 0 → left-skewed = 0 → symmetric
Moment Coefficient of Skewness (SPSS)	$Sk=rac{rac{1}{n}\sum(x_i-ar{x})^3}{s^3}$	> 0 → right-skewed < 0 → left-skewed = 0 → symmetric

PEARSON'S COEFFICIENT OF SKEWNESS: MODE VS MEDIAN

Two common formulas:

1. Using the Mode:

$$Sk_P = rac{ar{X} - ext{Mode}}{s}$$

- Requires a well-defined mode.
- Can be problematic if the distribution is multimodal or the mode is unclear.
- 2. Using the Median:

$$Sk_P = rac{3(ar{X} - ext{Median})}{s}$$

- Uses the median, which always exists.
- More stable in skewed distributions or with outliers.

Key Points:

- The two formulas do not necessarily give the same value.
- The median-based formula is more robust and often preferred.
- For symmetric distributions, both formulas give values close to zero.

ADVANTAGES AND DISADVANTAGES OF SKEWNESS MEASURES

- Pearson's Coefficient of Skewness
 - Simple, intuitive (based on mean, mode, median).
 - X Depends on mode/median (not always defined), less robust.
- Moment Coefficient of Skewness (SPSS)
 - Standardized, uses all data points, always available in software.
 - \times More abstract, sensitive to outliers.

EXERCISE 1.32

1.32 Consider the following data:

17	62	15	65
28	51	24	65
39	41	35	15
39	32	36	37
40	21	44	37
59	13	44	56
12	54	64	59

- a. Construct a frequency distribution.
- b. Construct a histogram.
- c. Construct an ogive.
- d. Construct a stem-and-leaf display.

EXERCISE 2.8

2.8 The ages of a sample of 12 students enrolled in an online macroeconomics course are as follows:

21 22 27 36 18 19

22 23 22 28 36 33

- a. What is the mean age for this sample?
- b. Find the median age.
- c. What is the value of the modal age?

EXERCISE 2.14

2.14 Calculate the coefficient of variation for the following sample data:

10 8 11 7 9

EXERCISE 2.15

2.15 The ages of a random sample of people who attended a recent soccer match are as follows:

23	35	14	37	38	15	45
12	40	27	13	18	19	23
37	20	29	49	40	65	53
18	17	23	27	29	31	42
35	38	22	20	15	17	21

- a. Find the mean age.
- b. Find the standard deviation.
- c. Find the coefficient of variation.

THANKS!

Questions?