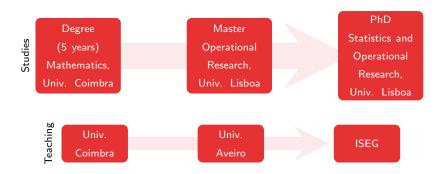
Decision Making and Optimization


Master in Data Analytics for Business

- Teacher: Cristina Requejo
 - Office: room 302, building Quelhas 2
 - E-mail: crequejo@iseg.ulisboa.pt
 - Student support: Email me to arrange a meeting.

Syllabus

- 1 Linear Programming
- 2 Duality and Sensitivity Analysis
- Transportation Model and Variants
- 4 Integer Linear Programming
- 6 Heuristics and Metaheuristics
- 6 Multi-Objective Programming
- Decision Analysis

Objectives

- 1 Study Optimization Approaches to Decision Making.
- Understand mathematical models to address problems such as production, assignment, scheduling, distribution and routing.
- Apply theoretical knowledge, practical problem-solving methods, including heuristics, and use analytical tools in the context of business decision making.
- Understand the type of data needed to support the mathematical models and tools used to analyze the data.
- **5** Structure and analysis of sequential decision problems.

Bibliography

- **1** H.A. Taha. *Operations Research: An Introduction.* Pearson Education Limited. 2017.
- **2** F.S. Hillier & G.J. Lieberman. *Introduction to Operations Research*. McGraw-Hill Education. 2024.
- **3** P. Goodwin & P.G. Wright. *Decision Analysis for Management Judgement*. John Wiley & Sons, Inc. 2014.
- Q R. Martí, P. Pardalos & M. Resende (Eds.). Handbook of Heuristics. Springer Nature. 2018.
- **6** P.A. Jensen & J.F. Bard. *Operations Research: Models and methods.* John Wiley and Sons. 2002.

and many others

Assessment

The assessment comprises two components:

- two group project, which accounts for 60% of the total grade.
- an individual written examination, which accounts for 40% of the total grade.

Final classification: weighted average of all the components.

The grades range from 0 to 20. To obtain approval, the weighted average of all assessment components must be greater than or equal to 9.5, with a minimum grade of 6 for each component.

Students with a final grade of 9 may be required to take an oral examination for approval. In this case, the maximum final grade will be 9.5.

Assessment rules for the group project

- The group size is three students.
- The project 1 accounts for 35% of the total mark and a minimum grade of 6 is required;
- The project 2 accounts for 25% of the total mark and a minimum grade of 6 is required.
- Students who do not achieve a grade of 6 or above in each project will be required to undertake an individual written examination during the Repeat Assessment Period. If they do not obtain a minimum grade of 6 in that exam, the final grade will be, at maximum, of 9.
- The scheduled dates for the submission of the group project are **October 31** for project 1, and **December 5** for project 2.
- A presentation and discussion of the project (either one or both) will be required.
- Following the presentation and discussion of the projects, discrepancies may arise in the grades awarded to individual group members.

Assessment rules for the written examination

- In written examinations, students are permitted to consult
 - one A4 sheet (equivalent to two pages) of material written by themselves, and
 - a scientific calculator (not be graphical, must be silent, not be capable of remote communication, not have Symbolic Algebraic Calculation (SAC) and not be Opensource).
- Students who miss the exam or do not achieve a grade of 6 or above in the individual written examination at the Regular Assessment Period will be required to undertake an individual written examination during the Repeat Assessment Period. If they do not obtain a minimum grade of 6 in that exam, the final grade will be, at maximum, of 9.
- The date of the individual written examination at the Regular Assessment Period is **09 December 2025**, at 12h00, duration 2h.
- The date of the individual written examination at the Repeat Assessment Period is **07 January 2026**, at 15h00, duration 2h.

Assessment rules

Any aspect not covered in the aforementioned provisions shall be subject to the general rules and regulations governing the assessment of master's degrees (see also https://www.iseg.ulisboa.pt/secretaria/en/legislation-and-documents/).

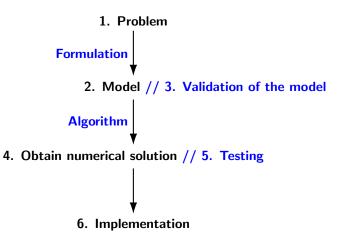
Decision Making and Optimization

Lisbon School of Economics & Management

Universidade de Lisboa

Decision Making and Optimization

- Decision Making and Optimization are part of Operations Research, which seeks to determine how best to plan and operate a system.
- Study programming models for complex organisational systems to aid decision making.
- Use mathematical programming models and programming techniques to obtain values for system variables to help optimise/improve their performance.


General methodology

Several authors (e.g. W. Winston, Operations Research: Applications and Algorithm, 3rd ed. Duxbury Press, 1994) suggest that the methodology of problem solving must include the following steps

- 1 Identification and study of the problem;
- 2 Formulation and construction of a mathematical programming model;
- Validation of the model;
- Obtaining the model solution;
- Testing the solution (and validation of the model);
- 6 Implementation of the solution.
- models improve the organization of operations

Steps of an OR project

Some Operations Research (OR) models

- Mathematical Programming Models:
 - Linear Programming (LP),
 - Integer Linear Programming (ILP),
 - Non-Linear Programming (NLP),
 - Network Optimization (NO),
 - Multi-criteria Optimization (MCO),
 - Robust Optimization (RO),
 - Stochastic Optimization (SO), etc
- Probabilistic Models:
 - Markov Chains,
 - Queues,
 - Prediction, etc
- Decision models:
 - Comparison Process,
 - Decision Trees.
 - Simulation.
 - Game Theory, etc

Challenge

The organic market *From Orchard to Basket* prepares weekly fruit baskets for its customers. There are two types of baskets:

- Premium Basket (A) designed for juices and fruit salads.
- Smart Basket (B) an economical option for daily snacks.

The warehouse has limited fruit stock:

- Apples: 10 units available.
- Oranges: 14 units available.

Each basket requires the following resources:

- Premium Basket (A): 1 apple and 2 oranges.
- Smart Basket (B): 1 apple and 1 orange.

The profits are:

- Premium Basket (A): 5 € per unit.
- Smart Basket (B): 3 € per unit.

Decide how many baskets A and B to prepare in order to maximize profit without exceeding the stock of fruit.

