

nically increasing.

(b) Solve explicitly the IVP for a = 3.

Universidade de Lisboa Instituto Superior de Economia e Gestão

Doctorate Degree (PhD) in Economics

$\underline{Advanced\ Mathematical\ Economics} - 1st\ Semester\ \textbf{-}\ 2025/2026$

First Test - 14th of October 2025
Duration: $(75 + \varepsilon)$ minutes, $ \varepsilon \le 15$
Version B
Name:
Student ID #:
• Give your answers in exact form.
• In order to receive credit, you must show all of your work. If you do not indicate the way in which you solve a problem, you may get little or no credit for it, even if your answer is correct.
1. Consider the following IVP $(y \text{ is a function of } t \neq 0)$:
$\begin{cases} y' + \frac{y}{t} = e^t \\ y(1) = 1 \end{cases}$
(a) Write the integrating factor associated to the equation and sketch its graph.(b) Write the solution of the IVP, identifying its maximal domain.
2. (Logistic law by Verhulst) Let p be a C^{∞} map such that $(p$ depends on $t \in \mathbb{R}_0^+)$:
$\begin{cases} p' = 5p - p^2 \\ p(0) = a \end{cases}$
(a) Write all possible values of $a \in \mathbb{R}_0^+$ for which the solution of the IVP is monoto-

3. Consider the linear system of ODEs in \mathbb{R}^2 given by $(x \text{ and } y \text{ depend on } t \in \mathbb{R})$:

$$\begin{cases} \dot{x} = x + y \\ \dot{y} = 3x + 3y \end{cases}$$

- (a) Write the general form of the solution.
- (b) Sketch the phase portrait of the system. Locate, in the phase portrait, the **unique** solution such that x(0) = 0 and y(0) = 3. What is the limit of this solution when $t \to -\infty$?

4. Consider the differential equation of second order $(y \text{ is a function of } t \neq \pi/2 + k\pi, k \in \mathbb{Z})$:

$$y'' + y = \frac{1}{\cos t}$$

- (a) Find a fundamental system of solutions of the associated homogeneous equation, say $\{\varphi_1, \varphi_2\}$.
- (b) Compute $W[\varphi_1(t), \varphi_2(t)]$, where W denotes the Wronskian operator.
- (c) Using the method of variation of constants, find the general solution of the differential equation.

5. (Lotka-Volterra system) Consider the system of ODEs in \mathbb{R}^2 given by $(x \text{ and } y \text{ depend} \text{ on } t \in \mathbb{R})$:

$$\begin{cases} \dot{x} = 2x - xy \\ \dot{y} = -4y + 8xy \end{cases}$$

- (a) Find the equilibria of the system.
- (b) Classify the origin (0,0) according to its Lyapunov-stability.
- (c) Sketch the phase portrait of the system in a small neighbourhood of (0,0). Please justify.

Credits:

1(a)	1(b)	2(a)	2(b)	3(a)	3(b)	4(a)	4(b)	4(c)	5(a)	5(b)	5(c)
1	1	0.5	1.5	1	1	0.5	0.5	1	0.5	0.5	1