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Introduction to Sequential Games

I Players no longer make simultaneous decisions.
I Games unfold sequentially, where players:

I Have perfect or incomplete information about past actions.

I Sequential games introduce time and information into
decision-making.

I Extensive form games are used to model these types of games.

I Extensive form games are defined by: players, actions, nodes,
chance, decision rules, and payoffs.

I Each player’s information and decisions depend on the
sequence of previous moves.

I Credibility becomes the central element to finding the
equilibria of the game.



Extensive Form Games

An extensive form game consists of:

1. Players: A finite set of participants, N.

2. Actions: The set of all possible actions, A, including those
that may not be chosen.

3. Nodes (Histories): Nodes represent sequences of actions
taken so far.

I Each history starts at an initial node x0.
I The initial node is unique
I Every action leads to a new node.
I Node cannot be reached by more than one branch.



Extensive Form Games

4 History X : complete description of the actions that have
been taken so far in the game

I X contains a distinguished element, x0, called the initial node,
or empty history,

I each x 2 X n fx0g takes the form x = (a1; a2; : : : ; ak) for some
finitely many actions ai 2 A, and

I if (a1; a2; : : : ; ak) 2 X n fx0g for some k > 1, then
(a1; a2; : : : ; ak�1) 2 X n fx0g (removing one action is also in
the original sequence).

I
A(x) � fa 2 A j (x ; a) 2 Xg

denote the set of actions available to the player whose turn it
is to move after the history x 2 X n fx0g.



Extensive Form Games

5 Available Actions A(x0) � A and probability: A set of
actions, A(x0) � A, and a probability distribution, �, on A(x0)
to describe the role of chance in the game.

I Chance always moves first, and just once, by randomly
selecting an action from A(x0) using the probability
distribution �.

I (a1; a2; : : : ; ak) 2 X n fx0g implies that ai 2 A(x0) for i = 1
and only i = 1 (i.e., first action is determined by chance).

6 End Nodes E � fx 2 X j (x ; a) =2 X for all a 2 Ag: Nodes
where the game ends, with no further actions available.

7 Decision Function �:
I Specifies which player makes the move at each node.
I

Xi � fx 2 X n (E [ fx0g) j �(x) = ig

decision nodes belonging to player i



Extensive Form Games

8 A partition I of decision nodes X n (E [ fx0g) into
information sets. For player i , we denote her set of
information sets Ii

I Two nodes x and x 0 are in the same information set if:
I (i) The same player �(x) = �(x ′) moves at both nodes.
I (ii) The available actions A(x) = A(x ′) are the same.
I (iii) Once the set containing x and x ′ is reached, the player

does not know if she is on x or x ′. She only knows the node
has been reached.

I The information set I (x) describes what the player knows
when it’s their turn to act.

I I (x) represents the histories the player cannot distinguish
between at node x .

I Singleton: information set containing only one node
I Imperfect information: no all information sets are singleton.
I Perfect recall: no player forgets what they learn.

I For nodes x and y in the same information set, they must
share the same history of the player’s own actions.

I Players never forget their own past actions.



Extensive Form Games

9 For each i 2 N a Payo� Function ui :
I von Neumann-Morgenstern payoff function whose domain is

the set of end nodes
I Describes the payoff to each player for every possible complete

play of the game.

An extensive form game is written as
Γ = hN;A;X ;E ; �; �; I ; (ui )i2Ni. If the sets of actions A and

nodes X are finite, the game is called a �nite extensive form
game.



Example 1: Coin Removal Game

There are two players, denoted by N = f1; 2g and 21 coins. Each
player can remove up to three coins on their turn, represented by
the actions r1; r2; and r3, corresponding to the removal of one,
two, or three coins, respectively. There is no chance in this game,
we define A(x0) � fāg, indicating that chance has only one move.

I Full set of actions:

I History Example:

I Information:



Example 1: Coin Removal Game

Suppose we have these two stories in the end of the game (all 21
coins are removed).

I e1 = (ā; r1; r2; r1; r3; r3; r3; r3; r3; r2)

I e2 = (ā; r3; r3; r3; r3; r3; r3; r2; r1)

I Game Outcome:
I e1:
I e2:

I Payo�s:
I
I



Game Tree

Following this mathematical description, we can represent
extensive form games graphically through game trees.

Game trees are directed graphs in which:

1. Game starts with a unique initial node (xo). We indicate if it’s
chance of a player’s turn.

2. Each node is associated with the player that plays it.

3. The possible actions at a node for a player are indicated as
branches.

4. At the end nodes the payoffs associated with the previous
sequence of moves are indicated.

5. Each node can only be reaced by one branch.

6. Information sets are denoted by ellipses.



Game tree

Figure: Game tree corresponding to the remove-coins example



Extensive form game strategies

A (pure) strategy for a player in an extensive form game is a
complete description of the choices the player would make in every
possible contingency.

It specifies what the player would do at each decision point, as if
these choices were to be executed by someone else on the player’s
behalf.

Formally, a pure strategy for player i in an extensive form game Γ
is defined as a function:

si : Ii ! A;

satisfying:
si (I (x)) 2 A(x) 8x with �(x) = i :



Characteristics of Pure Strategies

I Specifies an action for each information set. Complete plan of
action, detailing responses to every possible move in the game.

Figure: Extensive form game strategy



Backward Induction Strategies

For finite games of perfect information, we use the concept of
backward induction to rule out unreasonable paths.

Backward induction ensures that each action at every decision
node is optimal, considering both past and future.

I In finite extensive-form games with perfect information,
strategies from backward induction form a Nash equilibrium.

I The algorithm always terminates because the game is finite.

I Every finite extensive-form game with perfect information has
a pure strategy Nash equilibrium.

I However, not all Nash equilibria arise from backward induction
strategis.



Backward Induction in Practice

A backward induction strategy is constructed by sequentially
choosing optimal actions, starting from the last decision points and
moving backward through the game.

1. Identify the penultimate nodes: the player chooses their best action
considering the payo�s at the immediate end nodes that follow them.

2. Assign optimal actions at each penultimate node.

For each penultimate node x , let sι(x)(x) denote the action that
maximizes player �(x)’s payo�. This results in a payo� vector ux

corresponding to x .

3. Collapse the game, simplifying the decision tree.

Replace all nodes strictly following each penultimate node x with x itself
and assign ux as the payo�. Now x becomes an end node with the payo�
ux

4. Repeat this process until every node has an action.

Continue this process|moving backward and assigning optimal actions at
each stage|until every decision node in the game has an action assigned
to it.



Example: Grenade Game

1. P1 chooses an action a1 from the feasible set A1

2. P2 observes a1 and then chooses an action a2 from the
feasible set A2

3. Payoffs: u1(a1; a2) and u2(a1; a2).



Example: Grenade Game

We start with backward induction. When player 2 moves, she
observes what player 1 has done and decides a2 to maximize her
utility:

max
a22A2

u2(a1; a2)

Assume this has a unique solution and let us denot it as R2(a1).
This is 2’s reaction or best-response to 1’s.



Example: Grenade Game

Now, one can reason in the same way and will realize that 2 is
going to respond to whatever a1 she does with R2(a1). Thus, one
will choose a1 to maximize her utility, given 2’s response

max
a12A1

u1(a1;R2(a1)) (1)

Suppose this has a unique solution a�1.

Then, the backward induction outcome of the game is
(a�1;R2(a

�
1)).

Notice that the outcome does not involve non-credible threats. 1
anticipates 2’s reaction to any of her choices. So 1 does not
believe 2 will not do any action that is not R2(a1) (i.e., will not do
something that is not in her best-interest).



Dynamic games of imperfect information
Backward induction does not apply to games with imperfect
information, as players lack knowledge about certain actions or
events within an information set.

To solve such games, players treat subgames prior to the
information set as regular Nash equilibria and apply backward
induction in a modified form.

Figure: Subgames in trees



Subgames and Subgame Perfect Equilibrium

A node x defines a subgame if:

I (x) = fxg

I It starts at a singleton x

I Contains all decision nodes after x , and only those.

I Players know if the node x has been reached.

I Does not break any information set (i.e., if an information x 0

set follows x , all nodes in x 0 belong to the subgame defined by
x). This implies that all information prior to the subgame’s
initial node is known.

I In Figure 3(a), node x defines a subgame because all decision
points follow x .

I In Figure 3(b), node x does not define a subgame, as not all
nodes following x can be reached from x .



Subgame Perfect Equilibrium

A strategy profile is a subgame perfect equilibrium if it results in a
Nash equilibrium in every subgame.

I Subgame perfection refines Nash equilibrium, ensuring optimal
play in all subgames.

I Any subgame perfect equilibrium is also a Nash equilibrium of
the entire game.

I Theorem of existence: Every finite dynamic game has at
least a subgame perfect Nash equilibrium.



Subgame Perfection and Backward Induction

I Subgame perfection generalizes backward induction.

I In finite extensive form games with perfect information,
backward induction strategies are equivalent to subgame
perfect equilibria.

I Randomization may be necessary to ensure the existence of
subgame perfect equilibria,



Subgame perfection and backward induction

Notice that in our grenade game the backward induction outcome
was (a�1;R2(a

�
1)) but the subgame-perfect Nash euqilibrium is

(a�1;R2(a1))

I a�1 is a strategy for 1. She only plays at the beginning.

I R2(a
�
1) is an action not a strategy because it responds to a�1

I The strategy for 2 is the best-response R2(a1)

I In the game we have a subgame for each a1. So we need to
show that (a�1;R2(a1)) is the Nash equilibrium and that the
strategies are an equilibrium of all subgames (this is satisfied
by R2(a1).

I (a�1;R2(a1)) is NE because the strategies are best responses to
each other.



Repeated games

Finitely repeated game:

I Given a stage game, G , G (T ) represents the finitely repeated
game in which G is played T times, with the outcomes of all
precending plays observed before the next play begins. The
payoffs are the sum of the payoffs from the T stage games
(can incorporate discount factor).

I That is, players at t know the reuslt of the previous game
played.

I Player’s take into account that their actions at t can have an
effect in the future. Need to look ahead the current stage and
think about repetitions.

I Proposition: if G has a unique Nash Eq’m then, for any finite
T , G (T ) has a unique subgame-perfect outcomes: the Nash
Equ’m of G in every stage. Analogous if G is a dynamic game
of complete information.



Repeated games

If G has multiple Nash Eq’m., then G (T ) has multiple Subgame
Perfect Nash Eq’. Some of them may include not Nash Eq.
Let’s consider an example:

L2 M1 R2

L1 1; 1 5; 0 0; 0
M1 0; 5 4; 4 0; 0
R1 0; 0 0; 0 3; 3

Now we have 2 Nash Eq: (L1; L2) and (R1;R2). Suppose the game
is played twice, observing the first stage outcome before playing
the second.

Key: anticipate that different first-stage outcomes will be followed
by different equilibria in the second stage.



Repeated games

Suppose the following example: second stage outcome (R1;R2) if
in the first-stage they do (M1;M2), but (L1; L2) in the
second-stage if they fail to do (M1;M2) in the first.

Adding the payoff of (R1;R2) to the stage game for (M1;M2) and
the payoff of (L1; L2) to the rest :

L2 M2 R2

L1 2; 2 6; 1 1; 1
M1 1; 6 7; 7 1; 1
R1 1; 1 1; 1 4; 4

Nash Eq. of the stage game: f(L1; L2); (M1;M2); (R1;R2)g

Subgame-perfect outcome of repeated game:
f(L1; L2; L1; L2); (R1;R2; L1; L2); (M1;M2;R1;R2)g:



Repeated games

Notice that the sub-game perfect outcome (M1;M2;R1;R2) is
different from the rest because there is cooperation.

With multiple stage equilibria, one can build credible promises and
threats about the future which help reshaping behaviour.

In general, if G is a static game of complete information with
multiple Nash Eq., there may be subgame-perfect outcomes in
which for some stage t < T the outcome is not a Nash Eq.



Infinitely Repeated Games

An infinitely repeated game, G (1; �) consists in playing G infinite
times in a row. Players, at any t, can know the result of the t � 1
previous games played. Payoffs, labeled �it are discounted with a
discount rate � 2 (0; 1).

A player’s payoff is then the present value of the payoffs from the
infinite sequence of stage games:

Ui =
1∑
t=1

�t�1�it

Strategies are defined as a complete plan of action. They specify a
feasible action for the player in every contingency. That is,
strategies specify, for each possible history of play, the actions to
be taken.



Infinitely repeated games

I Because of the infinite stages, there are infinite strategies.

I Subgames are defined as what’s left to be played at any point
at which we know everything that happened before.

I Each subgame is identical to the original game. There are
infinite subgames that will be different depending on the
history of play until reaching the subgame.

I Theorem: a strategy will constitute a Subgame-perfect Nash
equilibrium if there are no profitable one-information node
deviations. That is, if I wouldn’t deviate in one period and
keep the rest unchanged, that is a subgame-perfect Nash
equilibrium.



Repeated Prisoner’s Dilemma with infinite horizon

Suppose our Prisoner’s Dilemma will be played an infinite number
of times. At each stage the payoffs are:

L2 R2

L1 1; 1 5; 0
R1 0; 5 4; 4

Assume players have a discount factor � and care about the
present value of the payoffs.

Just as in the previous example with multiple Nash Eq. in the
stage game, cooperation is possible.

Let’s think of the following strategy (trigger strategy or Grim
strategy):

s�: (R1;R2) in t=1 and at any t provided that at t � 1 the
outcome was (R1;R2); otherwise play L forever.



Infinitely Repeated Games

To be able to generalize the result to other inifnitely repeated
games, we need two additional definitions.

Feasible Payo�s: for a stage game G are the linear combination
of the pures strategy payoffs of G (i.e., convex hull of the 4 payoffs
of the Prisoner’s dilemma)

Average Payo� (�̄): payoff that would have to be received in
every stage to yield the same present value.

�̄ = (1� �)
1∑
t=1

�t :

I It re-scales present value, so maximizing �̄ is the same as
maximizing the present value.

I Directly comparable to stage-game payoffs.



Infinitely Repeated Games

\Folk" Theorem (Friedman,1971):
Let G be a finite, static game with complete information, and let
(e1; � � � ; en) represent the payoffs for the players in a Nash
equilibrium of G . Consider another feasible set of payoffs
(x1; � � � ; xn) from the game G , where each player’s payoff xi is
strictly greater than their equilibrium payoff ei , i.e., xi > ei for
every player i .

If the discount factor � is sufficiently close to 1 (i.e., the players are
patient and value future payoffs highly), then there exists a
subgame-perfect Nash equilibrium (SPNE) in the infinitely
repeated version of the game that achieves the payoffs (x1; � � � ; xn)
as the average payo� over time.
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