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[1, JR 7.17-18] Consider the strategic form game depicted below. Each of two
countries must simultaneously decide on a course of action. Country 1 must
decide whether to keep its weapons or to destroy them. Country 2 must decide
whether to spy on country 1 or not. It would be an international scandal for
country 1 if country 2 could prove that country 1 was keeping its weapons. The
payoff matrix is as follows:

Spy | Don’t Spy
Keep (_171) (17_1)
Destroy | (0,2) (0,2)

(a) Does either player have a strictly dominant strategy?
(b) Does either player have a weakly dominant strategy?

(¢) Find a Nash equilibrium in which neither player employs a weakly domi-
nant strategy.

Now suppose that country 1 can be one of two types, ‘aggressive’ or ‘non-
aggressive’. Country 1 knows its own type. Country 2 does not know country
1’s type but believes that country 1 is aggressive with probability € > 0. The
aggressive type places great importance on keeping its weapons. If it does so and
country 2 spies on the aggressive type, this leads to war, which the aggressive
type wins and justifies because of the spying, but which is very costly for country
2. When country 1 is non-aggressive, the payoffs are as before (i.e., as in the
previous exercise). The payoff matrices associated with each of the two possible
types of country 1 are given below.
Country 1 is ‘aggressive’ (Probability ¢)

‘ Spy ‘ Don’t Spy
Keep |(10,-9) | (5,—1)
Destroy | (0,2) (0,2)

Country 1 is ‘non-aggressive’ (Probability 1 —¢)
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‘ Spy ‘ Don’t Spy
Keep (_171) (17_1)
Destroy | (0,2) (0,2)

What action must the aggressive type of country 1 take in any Bayesian-
Nash equilibrium?

Assuming that € < %, find the unique Bayes-Nash equilibrium.

Solution

(a)

The best-response functions for each country are as follows:

— BRy(S) = D; BR,(DS) = K
— BRy(K) = S; BRy(D) = {8, DS}

Thus, no country has a strictly dominant strategy because no strategy
is unambiguously better for either player across all of the other player’s
actions.

Country 2 (B) has a weakly dominant strategy, which is to play Spy (.5).
This is because spying provides the same payoff as not spying when Coun-
try 1 destroys its weapons, but yields a strictly higher payoff when Country
1 keeps its weapons.

The only pure-strategy Nash equilibrium of the game is (Destroy, Spy), but
in this equilibrium, Country 2 employs a weakly dominant strategy. To
find an equilibrium where no player employs a weakly dominant strategy,
we need to consider mixed strategies.

Let p represent the probability that Country 1 chooses K (Keep), and ¢
represent the probability that Country 2 chooses S (Spy). The expected
payoffs for each country when the other is randomizing are:

EUL(K,q) = q(=1) + (1 — ¢)(1),
EUL(D,q) =q(0) + (1 = ¢)(0) =0,
EUs(p,S) = p(1) + (1 — p)(2),
EUs(p, DS) = p(—1) + (1 —p)(2)

For a mixed-strategy Nash equilibrium, the players must be indifferent be-
tween their pure strategies. This happens for Country 2 when EUs(p, S) =
EUy(p, DS). Since this holds when p = 0 (i.e., Country 1 destroys its
weapons), Country 2 will be indifferent and can because of the condition
EU(K,q) = EU(D,q), if ¢ = 1/2 and 1 randomizes between keeping
and destroying, but in this scenario.



We can also see this computing the best responses and their intersection.

EU(p,q) = —pq +p(1 — q) = p(1 — 2q);
EUL(p,q) = pq +p(1 —q) +q[(¢(1 —p) + (1 —p)(1 — q)] = 2pq + 2 — 3p.

To compute the best response functions notice that:
1. For 1, if 1 —2¢q is negative, then it will try to minimize that by setting
p=0
If instead 1 — 2¢>0 it will maximize it setting p =1
If 1 — 2¢ = 0, then he’s indifferent and sets any p € [0, 1]

L

For Country 2, for any p > 0, ¢ = 1 is the best response.
5. Instead, if p = 0, Country 2 is indifferent and chooses any ¢ € [0, 1]

This gives the following 2 best-response functions:

p=1 q<1/2,
p((¢;(1-q)) =p"(q) =qpe(0,1] ¢=1/2
p=0 q>1/2.

o0, (1 - p))) = ¢"(p) = {q =l

Depicting this best-response funcitons:

q
(S) 1
7*(p)
p= 1/2 L L L p*(q)
(DS) 1 P
(D) )

Notice that both intersect in the pure-strategy Nash Equ'm (¢ = 1,p = 0)
{(Destroy, Spy)} and in the mixed strategy we had also found before p =
0,q=1/2.



Thus, a Nash equilibrium where no player plays a weakly dominant strat-
egy is p = 0 (Country 1 always destroys) and ¢ = 1/2 (Country 2 mixes
with equal probability). This would be a mixed-strategy Nash equilibrium.

(d) Keep because it is a strictly dominant strategy for the country 1 if it is of
the aggresive type.

(e) Let us redefine the game. Notice that the set of strategies for country 2
remains unchanged: So = S, DS. Instead, for country 1 now we have four
possible strategies indicating what they would do depending on their type
(a,w): S1 = {K*K¥, K*D" , DK™ D*D"}. For instance, the strategy
(K*K™) means that country 1 will keep if it is agressive and weak. Notice
that because keeping is a strictly dominant strategy if 1 is agressive, D
will never be played, so we can rule out equilibria in which the strategies
for 1 of the type aggresive involve D. That is, we would be left with
{K*K", K*D")}

Let’s look at the expected utility of country 2 taking this into account:

EUy(K°K®",S)=¢(-9)+ (1 —¢)1=1-10¢e

EUQ(K K, DS) e(=1)+ (1 —e)(=1) = —1

EUy(K*DvV,S)=¢e(-9)+(1—¢)2=2—-11¢
(K

EU, D“’ ,DS) =e(-1)+(1—¢)2=2—3e.

Notice that because ¢ < 1/5, the best-response of country 2 to (K*K™)
is DS (i.e., EU3(K*K"™,S) < EU(K*K"™,DS). Notice also that for any

e €[0,1], EUy(K*D",S) < EUs(K*D™, DS), so the best-response would
be not to spy again.

Spy ‘ Don’t Spy
K°K" | 10e = (1 —¢),1—10e | be + (1 —¢),—1
KeDW 10e,2 — 11e 5e,2 — 3¢

Thus, we have a Bayesian Nash equilibrium with (K*K™, DS).

[2, MWG 8.D.5] Consumers are uniformly distributed along a boardwalk that
is 1 mile long. Ice-cream prices are regulated, so consumers go to the nearest
vendor because they dislike walking (assume that at the regulated prices all
consumers will purchase an ice cream even if they have to walk a full mile). If
more than one vendor is at the same location, they split the business evenly.

(a) Consider a game in which two ice-cream vendors pick their locations simul-
taneously. Show that there exists a unique pure strategy Nash equilibrium and
that it involves both vendors locating at the midpoint of the boardwalk.

(b) Show that with three vendors, no pure strategy Nash equilibrium exists.



Solution

In this game, each player (vendor 1 and vendor 2) chooses a location along
the boardwalk, where the possible locations are represented by x; € [0, 1]. Since
prices are regulated, their profits depend solely on the size of the market they
serve.

Given that consumers are uniformly distributed along the boardwalk, the
demand at any location x; is represented by the cumulative distribution function
(CDF) at that point. In this case, the CDF is simply x;, as the distribution’s
support is defined over [0,1]. Thus, each vendor’s payoff is a function of their
location strategy.

For any chosen pair of locations (x1,x2), each vendor serves the consumers
on their side of the boardwalk, with the dividing line set at 21322, This midpoint
allocation arises because, when the vendors do not choose the same location,
half of the consumers in the segment between them will go to each shop. This
allows us to compute the payoffs based on each vendor’s chosen location. Thus,
we have:

o If z; <z fori,j=1,2andi#j:

xX; +CEj
Ui(xi;xj) = 9
T +x;

Uj(l‘i,l‘j):1— D)

We first prove that the location choice z] = x5 = % constitutes a Nash

Equilibrium by showing that there are no profitable unilateral deviations. Then,
we demonstrate that this equilibrium is unique.

In this context, a profitable unilateral deviation would involve a vendor shift-
ing their location by a very small amount, ¢, to either side. Due to the symmetry
of the game, it is sufficient to show that one vendor has no incentive to deviate,
as the same reasoning will apply to the other.

Suppose, then, without loss of generality, that Vendor 1 considers shifting e
to the right of x5 = % This means Vendor 1’s new location is 2} = % + €. Now
positioned to the right of Vendor 2, Vendor 1’s new payoff would be determined
by the consumers located between the midpoint of 23 and x} and the end of the
boardwalk. Specifically:

irlie 1 € 1
- % =57"3<3 = uy (27, x3).

The same reasoning applies if Vendor 1 shifts e to the left of =3, such that

ui(zy,735) =1

x) = % — €. In this case, the payoff would be:
1,1
s+5—€¢ 1 € 1 .
ui (2, 73) = 22— 22 =§—§<§=u1(x17x§)-
Thus, 1 = a2 = % is a Nash Equilibrium. Next, we will demonstrate that

this equilibrium is unique. We start by showing that no equilibrium can exist



if x; # x;, and then we prove that the only value for which x; = x; constitutes

an equilibrium is z; = z; = %

e Case z; < x;: Here, x; would benefit by shifting € to the right, and z;
would similarly benefit by shifting e to the left, as both would capture a
larger market segment.

e Case z; = z; < %: Either vendor would gain by shifting € to the right.
In this configuration, the profits from not deviating are smaller than %
However, if either vendor moves € to the right of the other, they would

capture a market share of 1 — x; — § > 0.5, since x; < 0.5.

e Case z; = x; > %: By similar reasoning, either vendor would benefit by

shifting € to the left of the other, thereby increasing their market share.

This reasoning confirms that 1 = x5 = % is the unique Nash Equilibrium

in this game.

(b) Suppose an equilibrium (1, z2,z3) exists. First, consider the case where
x1 = w9 = x3. In this scenario, each firm would serve % of the market. However,
any firm can increase its sales by moving € to the right (if 1 = 20 = 23 < %)
or to the left (if z1 = 20 = z3 > %)7 which contradicts the existence of an
equilibrium.

To understand the thresholds for profitable unilateral deviations, consider
the following points:

Moving € to the right is a profitable unilateral deviation if it results in profits
greater than % This profit arises from serving the additional market between
the midpoint of the previous location (z1 = z2 = 23 = ) and the new location
(z + ¢). Mathematically, this condition can be expressed as:

x4+ (x+e 1
-

1 .
2 3

Simplifying this inequality, we find that for small €, the condition implies:

- 2
< =.
3
Similarly, moving e to the left is a profitable deviation if it also results in
profits greater than % The profit for the firm moving left can be expressed as:

x4+ (x—¢€)

>
2

W =

For small €, this leads to the condition:
S 1
x> —.
3

Now, suppose two firms are located at the same point, say x7 = xo. If
x1 = x2 < x3, Firm 3 could increase its sales by moving slightly left to =1 + e.



Alternatively, if 1 = x9 > 3, Firm 3 would benefit by moving slightly right to
1 — €, again contradicting the existence of an equilibrium.

Finally, suppose all three firms are located at different points. In this case,
the firm positioned farthest to the right could increase its sales by moving
slightly right to position itself just beyond its closest competitor. This is again
a contradiction, as similar adjustments could be made by the leftmost firm or
even the middle firm leaping to the right or left of a competitor.

Thus, no pure strategy Nash Equilibrium exists in this game.

[3, MWG 9.B.14] At time 0, an incumbent firm (firm I) is already in the
widget market, and a potential entrant (firm E) is considering entry. In order
to enter, firm E must incur a cost of K > 0. Firm E’s only opportunity to enter
is at time 0. There are three production periods. In any period in which both
firms are active in the market, the game in the figure is played. Firm E moves
first, deciding whether to stay in or exit the market. If it stays in, firm I decides
whether to fight (the upper payoff is for firm E). Once firm E plays “out," it is
out of the game.

Assume that:
e (Al xz>z>y,
o (A2) y+dx > (14 0)z,
e (A3)1+4+0>K.




(a) What is the (unique) subgame perfect Nash equilibrium of this game?

(b) Suppose now that firm E faces a financial constraint. In particular, if firm
I fights once against firm E (in any period), firm E will be forced out of the
market from that point on. Now what is the (unique) subgame perfect Nash
equilibrium of this game? (If the answer depends on the values of parameters
beyond the three assumptions, indicate how.)

Solution (a) It is evident that, due to the nature of the stage game and condi-
tion (A.1), Firm I has an incentive to accommodate the entrant if it decides to
enter. The central question is whether the incumbent can induce the entrant to
exit in some periods, thereby securing higher payoffs in the long run.

To analyze this, we will employ backward induction and examine the scenario
at t = 3. At this point, the incumbent is at the final decision node, faced with
the choice to either accommodate or fight. If the game reaches t = 3 and Firm
I is making this decision, it implies that the entrant has produced during all
preceding periods.

We can categorize the decision nodes into two broad types:

1. Nodes where Firm I always accommodates the entrant. The
payoff for this type of node can be expressed as:

240z + 6%z,

where z represents the payoff from accommodating, and § is the discount factor.

2. Nodes where Firm I chooses to fight at some point. In this case,
the payoff would be y, which is typically less favorable than the accommodating
scenario.

Given condition (A.1), and assuming that all z > z >y > 0 and ¢ € (0,1),
we can conclude that the payoff from consistently accommodating will always
be greater than the payoffs from any scenario in which Firm I opts to fight at
any stage.

Anticipating the incumbent’s behavior, the entrant will always choose to
produce in any period ¢ when it must decide whether to stay in the market or
exit, assuming that the incumbent will accommodate its entry. Specifically, the
entrant compares the payoff from entering and staying in the market, which is
given by 14 § 4+ 62 — k, with the payoff from exiting at any moment, which
would reduce the payoff by 1 or §, depending on the stage at which it opts out.
Notably, by Assumption 3, 1 4+ > k, ensuring that production at ¢t = 1 and
t = 2 yields positive profits. Consequently, the entrant would never opt out at
t=3.

Assumption 2 indicates that it is profitable for the incumbent to fight at least
once to eliminate the entrant. However, this represents a non-credible threat. If
Firm E enters and chooses to remain in the market (which is its best response),
it is not in Firm I’s best interest to fight because y < z.

Thus, the Subgame Perfect Nash Equilibrium (SPNE) dictates that Firm E
enters at ¢ = 0 and consistently chooses to stay in, while Firm I accommodates
at all stages.



Furthermore, as discussed in class, the stage dynamic game has a unique
Nash Equilibrium (Enter, In, Accommodate). Consequently, the repeated game
with ¢ = 3 will also possess a unique Nash Equilibrium, reflecting the same
strategy from the stage game across all three periods. This guarantees the
uniqueness of our equilibrium.

(b) The critical difference now is that the entrant FE cannot leverage the
non-credible threat posed by the incumbent [I; thus, if I decides to fight, the
entrant will be forced out of the market. It is important to note that at t = 3,
the incumbent will not choose to fight if it has accommodated the entrant up
to that point. We will then consider the scenario at ¢t = 2.

For the incumbent to find it optimal to fight at ¢ = 2, the profit it would
gain from fighting must exceed the profit from accommodating the entrant. This
condition can be expressed as:

240y + 8% > 24+ 62+ 0%z < 5(y + 0x) > §(2 + d2),

which holds true due to Assumption 2. Thus, at t = 2, it becomes profitable for
the incumbent to fight.

Consequently, the entrant must now weigh the payoff from producing for
just one period and opting out against the potential costs of being forced to
fight. Specifically, the entrant compares the following payoffs:

e Opting out yields 1 — k£ (no production at ¢ = 2 and receiving ¢ due to
opting out).

e Engaging in a fight results in a payoff of —1 — k.

Given this comparison, the entrant would choose to stay out at t = 2.

Now, let’s return to ¢ = 1. At this stage, the incumbent chooses to ac-
commodate while the entrant chooses to stay in (Compares 0 from not-entering
with 1 — &, from entering, producing and leaving due to the fght) However, the
decision made by Firm E at ¢t = 0 hinges on the value of k:

e If £ > 1, then Firm E will opt not to enter the market.
e If k£ < 1, then Firm F will decide to enter.

In the case where k = 1, both Enter and Not enter participate in the (unique)
continuation of the Subgame Perfect Nash Equilibrium (SPNE), leading to the
possibility of up to two SPNE in this scenario.

[4, Collusion in a Cournot Dupoly]| Consider a Cournot duopoly where two
firms produce a homogeneous product. Let g1 and ¢» denote the quantities pro-
duced by Firm 1 and Firm 2, respectively. The market price P(Q) is determined
by the total quantity produced, given by the formula:

PQ)=a-Q=a—-q —q forQ<a,



where @ is the total quantity in the market. If the total quantity produced by
both firms is greater than or equal to a, the market price becomes zero, i.e.,
P(Q)=0for Q > a.

Each firm incurs a production cost. The total cost of producing ¢; units for
Firm ¢ is:

Ci(gi) = cqi,
where c is the marginal cost of production, assumed to be less than a to ensure
positive profits for both firms.
In this setup, both firms choose their production quantities ¢; and go simul-
taneously, aiming to maximize their respective profits.

(a) Compute the unique Nash Equlibrium of the game.

Now consider an infintely repeated game based on the Cournot stage game.
Both firms have the discount factor §

(b) Compute the values of §, §*, for which the following trigger strategy is a
subgame-perfect Nash Equilibrium:

Produce half the monopoly quantity, gqm/2 in the first period. In the t'* period,

produce gm/2 if both firms have produced qm/2 in each of the t — 1 previous
periods; otherwise produce the Cournot quantity, qc (i.e., what you found on

(a))-

(¢) Show, for a given value of § < §*, the most-profiable quantity, ¢*, that can
be produced if both play trigger strategies that switch to Cournot after any
deviation. You might consider the following strategy:

Produce q* in the first period. In the t*" period, produce g*, if both firms have
produced g* in each of the t — 1 previous periods; otherwise, produce the Cournot
quantity, q..

(d) Consider the following carrot-and-stick strategy to show that the monopoly
outcome can be achieved when § = 1/2:

Produce half the monopoly quantity, q¢,,/2, in the first period. In the t** period,

produce G, /2 if both firms produced ¢, /2 in period t — 1, produce g, /2 if both
firms produced x in period t — 1, and otherwise produce x.

Solution

(a) Following from the class notes, in the normal form representation of this
game, we have two players, each with a strategy space S; = [0,a), as producing
q; > a would yield zero revenue due to the price constraint. The payoff for each
firm is its profit, given by

ui(si,s5) = m(qi,q5) = qila — q¢; — q; — c].

10



The Cournot-Nash equilibrium occurs when an output vector q maximizes
each firm’s profit, given the competitor’s quantity choice. Thus, we seek (¢7, ¢3)
that satisfies the first-order conditions for profit maximization:

1 1
G=5la-g-0, ¢=gla—g-o.
Solving this system of equations yields the equilibrium quantities: ¢; = g2 =
a—c
3

The intuition behind this result is as follows: If each firm were a monopolist,
it would set g; to maximize its profit as if the competitor’s output were zero,

a—c

yielding a monopoly quantity of ¢, = . In this scenario, each firm’s profit

2
(a=0)*

would be

If the firms were to cooperate, they would jointly set their combined output
to the monopoly level, for example, each producing ¢; = ¢,,/2. However, this
arrangement cannot be a Nash equilibrium, as each firm would have an incentive
to increase its output, given that the high price encourages an expansion in
quantity. This response drives down the price until the incentive to increase
quantity is reduced.

In the Cournot-Nash equilibrium with ¢; = g2 = %3¢, the aggregate output
is higher, reducing the market price, and diminishing the incentive for either
firm to unilaterally increase its production.

Graphically, we can analyze the solution using the reaction functions:

1 1
Ro(q1) = 5(@ —q1—c), Ri(g)= §(a —q2—c¢).
q2
(0,a—c) }
\“
* Ri(g2)
‘\
(O’ (a—c)/2) Mo ‘\

T, (dfh )

“\\ Rz(th)
\“ ~~~~~
q2
((a—=1¢)/2,0) (a—c,0)

Assuming ¢; < a — ¢, the
interior solution ensures that the first-order conditions are both necessary and
sufficient. Plotting R; and R yields an intersection at the Cournot-Nash equi-
librium point (¢}, ¢3) = (%3¢, 45°)

(b) To find the value of § that prevents any firm from wanting to deviate
from the agreed strategy, we need to compare the profits under both cooperation

and deviation scenarios.

11



First, consider the profit of each firm if they both produce half the monopoly
quantity, ¢, /2. This yields a profit of

(a—c)?

T [2 = 3

Under Cournot competition, however, the profit for each firm is

(a—c)?
9

Te =

To identify the most profitable deviation for one of the firms, suppose that
firm ¢ adheres to the strategy ¢; = ¢.,/2 while firm j deviates. Firm j would
choose ¢; to maximize its profit given g; = ¢y, /2:

1
max7m; = (a—¢q; — =q¢m — ¢ | q;.
o j < q; 2(]m >QJ

3(a

The optimal deviation quantity for firm j is therefore qf = T_C), yielding a

profit of
9(a —c)?

64

Now, to ensure that the firm prefers to stick with the agreed strategy over
deviating, we compare the present value of profits from cooperation with the
profits from deviating. The condition is:

Td —

Solving this inequality for d, we find that

9

> —.
6_17

This threshold ensures that the firm values the future stream of cooperative
profits more than the short-term gain from deviation.

(c) For values of § < 9/17, trigger strategies cannot sustain quantities as low
as half the monopoly quantity, ¢,,/2, as a Nash equilibrium; however, reverting
to Cournot quantities indefinitely can be an equilibrium. Thus, the most prof-
itable quantity that can be sustained lies somewhere between ¢,,,/2 and ¢.. To
determine this optimal sustainable quantity, we proceed as before by comparing
profits from following the strategy versus deviating.

Let’s denote this intermediate quantity as ¢*. If both firms produce ¢*, their
profits are

7" = (a—2¢" —¢)q".

We now identify the best deviation for firm j, assuming firm 4 sticks to producing
*

q:

max ;= g;(a — ¢ — ¢ —©)-
J

12



Solving, we find that the optimal deviation quantity for firm j is
_a—q' —c
q; = B
with corresponding deviation profits of

(a—gq" —c)?
1 .

Tqd =

Given these quantities, the condition for sustaining the strategy as a Nash
Equilibrium for any é becomes:

1)
*> -
1_671' _7Td+1_5

Te.

Unlike the previous case, here we are not solving for § but rather taking ¢ as
given and solving for ¢*, the cooperative quantity that maintains the strategy as
an equilibrium. Solving for ¢*, we find the lowest quantity for which the trigger
strategy forms a Nash equilibrium:

N 9—50

q = m(a_c)~

Observe that this ¢* lies between ¢,,/2 and ¢., depending on the value of 4.

(d)Let us define the profit a firm earns when they are in the punishment
phase as 7(z) = z(a — 2z — ¢). Notice that if firm i is producing z, firm j could
deviate from the punishment strategy by choosing a quantity that maximizes its
profits, knowing that they remain in the punishment phase and are not returning
directly to the collusive quantity ¢,,/2. Thus, firm j would choose:

a—Tr—=¢C

q; = 9

resulting in a deviation profit of

(a —x—c)?

wd(:r) = 1

There are two types of subgames to consider: (i) collusive subgames, where
both firms produced either ¢,,/2 or x in the previous period, and (ii) non-
collusive subgames, where the outcome in the previous period was neither of
these quantities.

In collusive subgames, both firms must prefer the stream of half-monopoly
profits to the profits from deviating and then entering punishment (where both
remain collusive during punishment) before eventually returning to the monopoly
output. This requires:



This inequality can be rearranged as:
1 1
0 <27Tm — 77(33)) > Ty — 3 Tm

In the punishment subgames, for the punishment strategy to be an equi-
librium, each firm must prefer continuing with the punishment output x over
deviating to achieve my(z) and then re-entering the punishment phase. This
requires:

5§ 1 5§ 1
- .= > [
w(:r)+175 27rm_7rd(x)+6(7r(:c)+15 27rm).

This condition can be rewritten as:

5 <;7rm - 7r(x)> > ra(@) — 7(2).

Based on these inequalities, if § = %, the strategy sustains the monopoly

outcome if:
T

oo w
N | =

< <

a—cC
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