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1. Introduction

1.1. Stochastic Gompertz model with harvesting

K
dXt = rXt In (X) dt — thXtdt + UlXtthX’ X(O) =x>0.

t

X: stock size at time t
r intrinsic growth rate
K carrying capacity
q catchability parameter
E, fishing effort at time t
o1 noise intensity
WX  standard Wiener process

x initial population size (known)

Yt = thXt yield
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2. Problem Definition

2.1. Variables

® Fish price, P;, follows a Geometric Brownian Motion:
dP, = pP.dt + oo P,dWF, P(0)=p > 0.

® Costs are defined as:
Ct = C]_Et + C2Et2.
® Profit is the difference between revenues and costs:
I—]t == Pt-Yt - Ct
= (Ptht —C — C2Et) E;.
® The total expected discounted profit over the interval (¢, T) is given by the functional:

T

J=E /e_éTI_l(T)dT

t

;
X(t) = xt, P(t) = pe | =By, p, /e—‘”n(f)dr
t
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2. Problem Definition

2.2. Problem Formalization

Goal: Using E(t) as control, solve the Stochastic Optimal Control Problem (SOCP):

T

J*:= max J= max E,, /6757'”(7')0'7

E(7) E(7)

0<r<T 0<r<T 0

s.t.

growth equation:
price dynamics:

effort restrictions:

terminal condition:

initial conditions:

dX, = X, In (Xﬁ) dt — GEX,dt + o1 X dW)X,

dPt = ﬂPtdt+U2PtthP,
0 < Epin S E(t) < Epax <00, Vte|[0,T],
J(Xt,Pr,T) =0,

X(0) = x, P(0) =p.
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2. Problem Definition
2.3. HJB and Control Function
Using dynamic programming, the solution to the SOCP is obtained via the HJB equation:

0J* (X, Py, t o "
f% = (PegXe — c1 — @E}) Ef — 6J%(Xe, Py, t)

J*(Xe, Py, t) K dJ* (X, Py, t)
=200 (X In [ — ) —qE X, | + —22 2P
* OX: e\ x; ) TR ap, It

10%0*(Xe, Pect) 5o 10205(Xe, Pest) 5.5
S\ T 2y2 22 2 VM T ) 2
2 oaxz U taT amr
P I (X, Py, t)
00 ho Xeoo P

ax.op, 7vtre

The unconstrained effort is: Ef, . (t) = %t (Pt - %}t{f“t)) — 32, which turns to be the

optimal variable effort if boundaries are satisfied.

Em,',,7 if E;‘kree(t) < Enin
E*(t) = Eftee(t)’ if Emi" S E;;ee(t) S Em3X7
Enax, if  Efee(t) > Emax
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2. Problem Definition

2.4. Discretization

® The time derivative is approximated by a forward difference quotient.

oJ; J;

*
g i = i
ot At ’

® Population derivatives are approximated by the following schemes.

aJ s
I, L~ Jitu, ,
e A RPN S WY B = WY R P S P
Ox 2Ax
2 |* * * *
Ity iy =245+ I ,
> ~ > 1<i<m-1,
Ox Ax
* * *
m 0. i = Imay
—d oy o =,
Ox Ax
2 [* * * *
I mty ~ 2Imay tImauy

2
3

Ox? - Ax?
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2. Problem Definition

2.4. Discretization

® Partial derivatives w.r.t. price follow the same reasoning as population ones.

(')J,-*’,J-
op
62J,*7,7j
op?
3J7:k7j
op
Sy
0p?
970,
op
82J7:07j
0p?

Q

%

Q

Q

Q

Q

2Ap ’

* *
iy = iy

1</<k-1,

Sy =2ty <l<k-1,

Ap? ’

P
i,kyj i,k—1,j
—= = [ =k

Ap ’
ki = 2ikri T ey
Ap? ’

Jing — Jio,j, 1o,
Ap
Jiag =201+ S0y

/=0.
Ap?
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2. Problem Definition

2.4. Discretization

® The cross partial derivatives w.r.t. population and price schemes are presented below.

1<i<m-1

i=m

oJ7; Sy — J g — Sy T s
~ , 1<I<k—-1,
Oxdp 4AxAp
oJn 1 ~ w1 — Im-t141j — Imi—1 Tt J;—1,/—1,j’ 1<i<k-1,
Ox0p 2AxAp
0J7y R R AP L R S A B .
o5 ~ SAYA , 1=k 1<i<m-1
xOp xAp
Wiy o Imki = I = ImpcrjtImapeny
Ox0p AxAp ’ ’
0J70 i1 — ity = I T 010 _ .
~ , I=0, 1<i<m-1
Ox0Op 2AxAp
Wmoj o Jmag = Imani = ImoitImr0i g

Ox0p

AxAp
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3. Solution

® When discretizations are applied and some simplifications performed, it is possible to write
the system with matrices A, B and C such that

AJ* =BJ +C,

with
N I B ] O Y e
and
* * * * / - .
Jj = [JO,O,j e S Jm,k,j] , 0<i<m, 0<I<k, 0<j<n

" denotes the transpose operator.
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4. Application
4.1. Scenarios
We will present and compare 3 scenarios:

S1 Profit based on stochastic prices: P; is described by the SDE dP; = uP;dt + UththP,
and the profit is given by

MNe=PYe—CG = ('thXt —C — C2Et) E..
S2 Profit based on deterministic Prices: P; is defined as Py = p; — po Y:, and the profit is
given by
Mi=PY:— C = (quXt - Cl) E — (P2q2th + CQ) Et2~
S3 Profit based on a penalised effort:

Me=PY: — (G + C2(e)) = (p1gXe — 1) B — (P2q2X;:2 + C2> Et2 —e(E: — Eref)2»

® where the artificial cost component penalizes profit values when the effort takes abrupt
changes from a reference effort value, say Eer.

® The higher (lower) the value of €, the higher (lower) the impact on effort and, consequently,
the lower (higher) the profit.
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4. Application

4.2. Data
Parameter Value Units
Population growth rate: r 1.331 year—1
Population carrying capacity: K 11400 tonnes
Initial population size: x 0.5K tonnes
Maximum population size: X,.x 2K tonnes
Population volatility: o3 0.2 year—1/2
Catchability: g 9.77 -107° SFU™! . year?
Maximum allowed effort: E,,.x r/q SFU
Minimum allowed effort: Eip 0 SFU
Linear cost coefficient: ¢; 1156.8 BDT-SFU!.year!
Quadratic cost coefficient: ¢ 0.01 BDT -SFU~2. year—!
Discount factor: & 0.05 year~!
Time horizon: T 50 year

BDT is an abbreviation for Bangladesh Taka.
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4. Application

4.2. Data
Parameters Value Units
Constant coefficient: p; 8362.3 BDT - tonnes™!
Linear coefficient: p; 0
Reference Effort: E,.f 05-r/q SFU
Magnitude of Penalisation: ¢ 0.4
Price growth rate: u 0.001 year™1
Price volatility: o 0.01 year—1/2
Initial price value: pg 8362.3 BDT - year—!

Wiener processes correlation: p 0

13 /20



4. Application

4.3. Effort Effort trajectories: mean and sample trajectory for each scenario
Effort Trajectories: sample and mean trajectory Effort Trajectories: sample and mean trajectory Effort Trajectories: sample and mean trajectory
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20001 —— Max Effort 2000 —— Max Effort 20001 —— Max Effort
— Mean —— Mean —— Mean
o 10 20 30 40 50 o 10 20 30 : 40 50 o 10 2 0 40 50
Time (years) Time (years) Time (years)
(a) S1 - stochastic prices (b) S2 - deterministic prices (c) S3 - penalised effort

® Besides being optimal, effort strategies (a) and (b) cannot be implemented due to social
and logistic issues arising from the frequent and significant adjustments on effort.

® Regarding (c), the penalization parameter reduces the amplitude of oscillations, benefiting
social issues, but logistical problems remain, albeit to a lesser extent.
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4. Application

4.4. Profit . . . . .
Profit trajectories: mean and sample trajectory for each scenario
1e7  Profit Trajectories: sample and mean trajectory 1e7  Profit Trajectories: sample and mean trajectory 1e7  Profit Trajectories: sample and mean trajectory
° —— Sample 74 — Sample 7 —— Sample
—— Mean — Mean — Mean
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Time (years) Time (years) Time (years)
(a) S1 - stochastic prices (b) S2 - deterministic prices (c) S3 - penalised effort

o Effort influences profit by affecting both revenues and costs. More aggressive policies raise
costs and reduce profit.

® In case (c), profit never reaches zero because there are no inactive periods; in (a), profit
shows a slight upward trend due to the drift in price dynamics.
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4. Application

4.5. Population

Population (tonnes)

Population Trajectories: sample and mean trajectory

Population Trajectories: sample and mean trajectory

Population trajectories: mean and sample trajectory for each scenario

Population Trajectories: sample and mean trajectory
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Time (years) Time (years) Time (years)

(a) S1 - stochastic prices

(b) S2 - deterministic prices

(c) S3 - penalised effort

® Due to softer effort strategy, (c) presents a higher population value.

® In general, population decreases whenever effort increases to maximum allowed levels.

e All trajectories present a stable population size, guaranteeing the sustainability of the

activity in the long run.
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4. Application

4.6. Comparison between models

Model J* (x 105 BDT) | A (%)

S1 - stochastic prices 605.813 +2.19

S2 - deterministic prices | 592.840 (reference)
S3 - penalised effort 561.756 -5.24
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Thank youl!

Moitas grazas!
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