
Python - Introduction_1ISEG – Lisbon School of Economics and Management

Excel & Python Analysis

2025

Introduction to Programming

Programming in Python

Python - Introduction_2ISEG – Lisbon School of Economics and Management

Objectives of this module

• Question: I’m not a software engineer! Why am I learning

programming?

• Answers:

1. Helps you train analytical thinking

2. Software is the language of the world

“In the future, not knowing the language of computers will be as challenging as being

illiterate or innumerate are today”

3. Promotes Computational Thinking

“teaches you how to tackle large problems by breaking them down into a sequence of

smaller, more manageable problems”

https://www.theguardian.com/technology/2014/feb/07/year-of-code-dan-crow-songkick

Python - Introduction_3ISEG – Lisbon School of Economics and Management

Objectives of this module (cont.)

• Q: Why Python?

• Answers:

1. Easy to learn programming language

• Interpreted

• High Level

• Multi-paradigm

2. Widely available

• No licensing fees

• Several different freeware environments (IDE’s)

• Fastest growing programming language

Python - Introduction_4ISEG – Lisbon School of Economics and Management

How to Run Python Code

• There are several alternatives

• Online, command-line environments (shell)
– Write the code and run it right away:

– https://www.python.org/shell/

– https://www.onlinegdb.com/online_python_interpreter

• Interactive Development Environments (IDE)
PyCharm Wing IDE

Spyder Eclipse + PyDev

Thonny Stani's Python Editor

Visual Studio Code + Python Extension

Python - Introduction_5ISEG – Lisbon School of Economics and Management

How to Run Python Code

• Notebook Environments

– Online - https://colab.research.google.com/

– Jupyter Notebook (the most widely used)

• Locally installed (runs on your browser with a local server software or inside an IDE)

Python - Introduction_6ISEG – Lisbon School of Economics and Management

Different programming paradigms

• Functional Programming

– e.g.: Haskel and, to some extent, Excel functions

• Declarative Programming

– e.g.: SQL

• Structured Procedural Programming

– e.g: C, Pascal, PYTHON

• Object-Oriented Programming (OOP)

– e.g.: C++, Java, C#, PYTHON

Python - Introduction_7ISEG – Lisbon School of Economics and Management

Python OO vs Structured Procedural

class Combination:
def __init__(self, n, k):

self.n = n
self.k = k

def factorial(self, num):
if num == 0:

return 1
else:

return num * self.factorial(num - 1)

def calculate(self):
return self.factorial(self.n) / (self.factorial(self.k) * self.factorial(self.n - self.k))

Create an instance of the Combination class
comb = Combination(10, 3)

Call the calculate method
print(comb.calculate())

#Define the Factorial function
def fact(n):

if n == 1:
return n

else:
return n * fact(n-1)

#Define the Combinations function
def combination(n, k):

return fact(n)/(fact(k) * fact(n-k))

Call the calculate function
print(combination(10,3))

Preferred method for

Software Engineers

Preferred method for

Data Scientists

𝐶𝑘
𝑛 =

𝑛!

𝑘! 𝑛 − 𝑘 !

Python - Introduction_8ISEG – Lisbon School of Economics and Management

Different forms of programming in Python

• “.py” script files:

– Text files containing Python Code

– Run from the command line: “python file_name.py”

– Executed as a whole

– Ideal for creating modules or scripts

• “.ipynb” Jupyter Notebook files:

– Run in a Jupyter Notebook environment

– JSON files with cells that can contain Code or Markdown

– Facilitates iterative and interactive development

– Allows execution of code blocks (cells)

– Ideal for exploratory data analysis and machine learning

Python - Introduction_9ISEG – Lisbon School of Economics and Management

For this course

• Python

• Structured Procedural Programming

• Jupyter Notebook Environment

Python - Introduction_10ISEG – Lisbon School of Economics and Management

Excel & Python Analysis

2025

Variables

Operators

Programming in Python

Python - Introduction_11ISEG – Lisbon School of Economics and Management

What we are going to learn

Values and Variables:

 Integers

 Float

 Strings

 Boolean

Lists[], Sets{}

Conditional Structures:

 IF

 IF / ELSE

 IF / ELIF / ELSE

Cycles:

 FOR using:

 list

 set

 range

 While:

 using “Break”

Functions → “def”

Modules → import

Python - Introduction_12ISEG – Lisbon School of Economics and Management

Variables

• A Variable is a container that will hold a value

• Each container will have:

– NAME → how you refer to it

– TYPE → what type of data values it will contain

• Primitive types:

– Integer (e.g. 123)

– Floating Point (e.g. 123.456)

– String (e.g. “This is a text” or ‘this is also a text’)

– Boolean (True or False)

Python - Introduction_13ISEG – Lisbon School of Economics and Management

Creating a Variable

• In Python we create a variable with the

assignment operator “ = ”

• The simple command:

 a = 10

– Will do the following:

• Create a container (variable)

• Label the container with “a”

• The container will have the type “Integer”

• Put the integer number 10 into the container

– Likewise, “b = 12.345” will create another container,

label it “b”, assign it the type “Floating Point” and put

the value 12.345 into it

Python - Introduction_14ISEG – Lisbon School of Economics and Management

Types of Variables

• Python recognizes the value assigned to a variable and gives it

the correct type

• a = 10 → a will be type “Int” (Integer)

• b = 1.123 → b will be type “Float” (Floating Point)

• c = “This is a text” → c will be type “Str” (String)

• d = True → d will be type “Bool” (Boolean)

Python - Introduction_15ISEG – Lisbon School of Economics and Management

Numeric Operators

(Lubanovic, 2014, p. 21)

Python - Introduction_16ISEG – Lisbon School of Economics and Management

Comparison Operators

• Equality ==

• inequality !=

• less than <

• less than or equal <=

• greater than >

• greater than or equal >=

• membership in

Python - Introduction_17ISEG – Lisbon School of Economics and Management

Other Operators

• Logical:

– and

– or

– Not

• Assignment
• = a = 5

• += a += 5  a = a + 5

• -= a -=5  a = a - 5

• *= a *= 5  a = a * 5

• /= a /= 5  a = a / 5

• %= a %= 5  a = a % 5

• **= a **= 5  a = a ** 5

Python - Introduction_18ISEG – Lisbon School of Economics and Management

String

• What is a string?

– Sequence of characters:

• “this is a string”

• ‘this is also a string’

• “can contain any char like 123 ! * etc.”

– Printing a string:

• print(“can contain any char like 123 ! * etc.”)

– Printing several strings:

• print("several", 'strings', 'in', "a", "sequence")

Python - Introduction_19ISEG – Lisbon School of Economics and Management

Special characters

• Escape Character: “\”

– Means the next character has special meaning

• Some examples:

– “\n” means “New Line”

– “\t” means “Tab”

Python - Introduction_20ISEG – Lisbon School of Economics and Management

Special characters (cont)

• Substitution Character: “%” (older usage for printing)

– When printing, put something where this char is

• Example:

• Duplicating a char will remove its special meaning:

Python - Introduction_21ISEG – Lisbon School of Economics and Management

Special characters (cont)

• Some more examples:

In: myStr = "Today's date is %d of %s of the year %d"

print(myStr % (20, "January", 2020))

Out: Today's date is 20 of January of the year 2020

In: myStr = "To print a \"Backslash\" we can duplicate the char '\\'"

print(myStr)

Out: To print a "Backslash" we can duplicate the char '\'

Python - Introduction_22ISEG – Lisbon School of Economics and Management

Formating strings (new version)

• Simple use of “.format()” or f’string’

Python - Introduction_23ISEG – Lisbon School of Economics and Management

Formating strings (new version)

• More string formatting

Python - Introduction_24ISEG – Lisbon School of Economics and Management

Some String functions

In: myStr = " This is the string to Play With "

print("[“ + myStr.lower() + "]“)

Out: [this is the string to play with]

In: print("["+myStr.upper()+"]")

Out: [THIS IS THE STRING TO PLAY WITH]

In: print("["+myStr.strip()+"]")

Out: [This is the string to Play With]

In: print("I've removed %d spaces" % (len(myStr)-len(myStr.strip())))

Out: I've removed 6 spaces

In: print("["+myStr.replace("Play", "Work")+"]")

Out: [This is the string to Work With]

In: print("["+myStr.replace("Play", "Work").strip()+"]")

Out: [This is the string to Work With]

Python - Introduction_25ISEG – Lisbon School of Economics and Management

More string functions

In: myStr = "0123456789abcdefghi"

print(myStr[9])

Out: 9

In: print(myStr[10]) #the 10th char, counting from 0 (first position)

Out: a

In: print(myStr[3:11]) #from position 3 to position 11 excluding 11th

Out: 3456789a

In: print(myStr[10:]) # from 10th position onward

Out: abcdefghi

In: print(myStr[:10]) # from the beginning til 10th position

Out: 0123456789

In: print(myStr[-5:]) #the last 5 letters

Out: efghi

Python - Introduction_26ISEG – Lisbon School of Economics and Management

Excel & Python Analysis

Lists, Sets

Programming in Python

Python - Introduction_27ISEG – Lisbon School of Economics and Management

Lists, Sets

• How to create each structure?

– myList = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

– mySet = {'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday’}\

Python - Introduction_28ISEG – Lisbon School of Economics and Management

Lists

• What is a List (Object of Class “List”)

– Ordered collection of items

– Can have any number of elements and of different data types

• A list can have another list as an element

– It is possible to search, add, and remove items from the list

• Mutable data type because it can be altered by adding or removing elements

• E.g.:
– myList = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday‘]

Python - Introduction_29ISEG – Lisbon School of Economics and Management

Working with Lists – Some methods

Python - Introduction_30ISEG – Lisbon School of Economics and Management

Operations (methods) with List objects

• append() – Adds an element to the end of the list

• clear() – Removes all elements from the list

• copy() – Returns a shallow copy of the list

• count() – Returns the total number of items passed as an argument

• extend() – Adds all elements of a list to some other list

• index() – Returns the index of an element (Note: If the same element appears multiple times

in the list, then the index of the very first match is returned)

• insert() – Inserts an element to the list at the defined index

• pop() – Eliminates and returns an element from the list

• remove() – Eliminates an element from the list

• reverse() – Reverses the order of all elements of the list

• sort() – Sort all elements of a list in the ascending order

Python - Introduction_31ISEG – Lisbon School of Economics and Management

Sets

• What is a Set?

– An unordered collection of simple objects in Python

– It is mutable

– Has no duplicate elements

– Can have any number of elements and of different data types

– Allow testing for membership, checking whether a set is a subset of some

other set and finding the intersection between two sets

• Mathematical Set Theory

Python - Introduction_32ISEG – Lisbon School of Economics and Management

Operations (methods) with Set Objects

• add() – Adds an item to the set

– Note: As sets don’t have repeating values, the item that is to be added to

a set must not be already a member of the set.

• clear() – Removes all items of the set

• difference() – Returns a set with all elements of the invoking set

but not of the second set

• intersection() – Returns an intersection of two sets

• union() – Returns a union of two sets

Python - Introduction_33ISEG – Lisbon School of Economics and Management

Working with sets

Python - Introduction_34ISEG – Lisbon School of Economics and Management

More Set Examples

Python - Introduction_35ISEG – Lisbon School of Economics and Management

Excel & Python Analysis

Conditions

Cycles

Programming Control Structures

Python - Introduction_36ISEG – Lisbon School of Economics and Management

Programming Control Structures

?
FalseTrue

?
False

True

Sequence Decision Cycle

Normal flow of

execution.

Each instruction is

executed before the

next

if

if / else

if / elif / else for: using lists, sets, tuples

for: using ranges

while

Python - Introduction_37ISEG – Lisbon School of Economics and Management

Decision

Python - Introduction_38ISEG – Lisbon School of Economics and Management

Cycle FOR

• Cycle “for”

– List

– set

Python - Introduction_39ISEG – Lisbon School of Economics and Management

Cycle FOR with “range”

• Use range(initial, final, step)

– “step” is optional. If omitted, assumed “1”

Attention: The

Range will be:

Initial <= I < final

Python - Introduction_40ISEG – Lisbon School of Economics and Management

Cycle “While”

Python - Introduction_41ISEG – Lisbon School of Economics and Management

Excel & Python Analysis

2024

Defining Functions

Importing Modules

Handling Exceptions

Programming in Python

Python - Introduction_42ISEG – Lisbon School of Economics and Management

Functions

• What is a function?

– named piece of code, separate from all others

– can take any number and type of input parameters

– return any number and type of output results

• How to use a function?

– Define it

– Call it

• Syntax

“ def «function_name» (list of arguments): ”

Python - Introduction_43ISEG – Lisbon School of Economics and Management

Example Function

A function may call itself (Recursive function):

A function to calculate the value of the factorial of a number:

Python - Introduction_44ISEG – Lisbon School of Economics and Management

Modules

• module is a file of Python code

• Import a module

import «module-name» as «myName»

• Example:

optional

Python - Introduction_45ISEG – Lisbon School of Economics and Management

Exception Handler

• Protect your program with “try” / “except”:

Python - Introduction_46ISEG – Lisbon School of Economics and Management

List Comprehensions

• Concise way of creating lists in Python.

• Creates a list by generating new elements in a range, filtering out

elements based on a certain condition.

• The basic syntax for a list comprehension is as follows:

 [expression for item in iterable if condition]

• expression is the operation to be performed on each element in the iterable.

• item is a variable that represents each element in the iterable.

• iterable is any Python object that can be iterated over

Python - Introduction_47ISEG – Lisbon School of Economics and Management

List Comprehensions exemples

Python - Introduction_48ISEG – Lisbon School of Economics and Management

Excel & Python Analysis

Handling Tables and Files

Programming in Python

Python - Introduction_49ISEG – Lisbon School of Economics and Management

Pandas

• Pandas

– Very powerful, flexible and easy to use open-source data analysis and

manipulation module

– Some useful functionality:

• Read and write Comma Separated Values (“.csv”) files

• Read and Write Excel files

• Handle tables (data frames)

In []: import pandas [as pd]

optional

Python - Introduction_50ISEG – Lisbon School of Economics and Management

Data Frame

• 2-dimensional data structure
• columns of potentially different types
• Similar to an Excel table
• The most commonly used pandas object

Python - Introduction_51ISEG – Lisbon School of Economics and Management

Read “.csv” file

grades.csv file

Separator: “Tab”

Python - Introduction_52ISEG – Lisbon School of Economics and Management

Accessing data-frame cells with “.loc”

• There are different methods to access a data-frame cell

– “loc”, with the row number and column name(s):

my_dataframe.loc[line_num, col_name]

my_dataframe.loc[line_i:line_f, col_i:col_f]

– The .loc method is inclusive for line and column ranges

Python - Introduction_53ISEG – Lisbon School of Economics and Management

Accessing data-frame cells with “.iloc”

– “iloc”, with the row number and column number:

my_dataframe.iloc[line_num, col_num]

my_dataframe.iloc[line_i:line_f, col_i:col_f]

– The .loc method follows standard Python rules for line and column ranges

Python - Introduction_54ISEG – Lisbon School of Economics and Management

Writing a data-frame to Excel

• Once having a data-frame, we can write it to an Excel file

– Create a container to write the Excel file:

– Write the data-frame to the container “my_writer”, with a worksheet called

“Grades” (do not write the index)

– Save the Excel File

In []: my_writer = pd.ExcelWriter('myNewExcelFile.xlsx', engine='xlsxwriter')

In []: my_dataframe.to_excel(my_writer, sheet_name = 'Grades', index=False)

In []: my_writer.save()

	Slide 1
	Slide 2: Objectives of this module
	Slide 3: Objectives of this module (cont.)
	Slide 4: How to Run Python Code
	Slide 5: How to Run Python Code
	Slide 6: Different programming paradigms
	Slide 7: Python OO vs Structured Procedural
	Slide 8: Different forms of programming in Python
	Slide 9: For this course
	Slide 10
	Slide 11: What we are going to learn
	Slide 12: Variables
	Slide 13: Creating a Variable
	Slide 14: Types of Variables
	Slide 15: Numeric Operators
	Slide 16: Comparison Operators
	Slide 17: Other Operators
	Slide 18: String
	Slide 19: Special characters
	Slide 20: Special characters (cont)
	Slide 21: Special characters (cont)
	Slide 22: Formating strings (new version)
	Slide 23: Formating strings (new version)
	Slide 24: Some String functions
	Slide 25: More string functions
	Slide 26
	Slide 27: Lists, Sets
	Slide 28: Lists
	Slide 29: Working with Lists – Some methods
	Slide 30: Operations (methods) with List objects
	Slide 31: Sets
	Slide 32: Operations (methods) with Set Objects
	Slide 33: Working with sets
	Slide 34: More Set Examples
	Slide 35
	Slide 36: Programming Control Structures
	Slide 37: Decision
	Slide 38: Cycle FOR
	Slide 39: Cycle FOR with “range”
	Slide 40: Cycle “While”
	Slide 41
	Slide 42: Functions
	Slide 43: Example Function
	Slide 44: Modules
	Slide 45: Exception Handler
	Slide 46: List Comprehensions
	Slide 47: List Comprehensions exemples
	Slide 48
	Slide 49: Pandas
	Slide 50: Data Frame
	Slide 51: Read “.csv” file
	Slide 52: Accessing data-frame cells with “.loc”
	Slide 53: Accessing data-frame cells with “.iloc”
	Slide 54: Writing a data-frame to Excel

