

Diferenciabilidade

Exercício 1. Calcule as funções derivadas parciais de 1^a ordem das seguintes funções, indicando o respectivo domínio:

$$\mathbf{a}. f(x,y) = \begin{cases} \frac{\sin(xy)}{x} & se \ x \neq 0; \\ y^2 - y & se \ x = 0. \end{cases}$$

$$\mathbf{b}. g(x,y) = \begin{cases} x^2 - yx & se \ x \neq y; \\ x & se \ x = y. \end{cases}$$

Exercício 2. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & se \ (x,y) \neq (0,0); \\ 0 & se \ (x,y) = (0,0). \end{cases}$$

Verifique que a função admite derivadas parciais em todo o seu domínio mas que não é contínua na origem.

Exercício 3. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} 0 & se \ xy = 0; \\ \sqrt{x^2 + y^2} & se \ xy \neq 0. \end{cases}$$

- **a.** Calcule $\frac{\partial f}{\partial x}(0,0) \in \frac{\partial f}{\partial y}(0,0)$.
- **b.** Prove que não existe $f_v'(0,0)$, qualquer que seja o vector $v \in \mathbb{R}^2$ tal que $v_1v_2 \neq 0$.
- **c.** O que pode concluir sobre a diferenciabilidade de f no ponto (0,0)?

Exercício 4. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & se \ (x,y) \neq (0,0); \\ 0 & se \ (x,y) = (0,0). \end{cases}$$

- **a.** Estude a continuidade de f em \mathbb{R}^2 .
- **b.** Mostre que f(tx, ty) = tf(x, y) para todo o $(x, y) \in \mathbb{R}^2$ e todo o $t \in \mathbb{R}$.
- c. Utilize a alínea anterior para provar que $f_v'(0,0) = f(v)$ para todo $v \in \mathbb{R}^2$.
 d. Utilize a alínea anterior para calcular $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- e. Estude a diferenciabilidade de f no ponto (0,0)

Exercício 5. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^2 + y^2 - x^3 y^3}{x^2 + y^2} & se (x,y) \neq (0,0) \\ 1 & se (x,y) = (0,0). \end{cases}$$

- **a.** Estude a continuidade de f em \mathbb{R}^2 .
- **b.** Calcule o gradiente de f no ponto (1,1).
- **c.** Estude a diferenciabilidade de f no ponto (0,0).

Exercício 6. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & se (x,y) \neq (0,0); \\ 0 & se (x,y) = (0,0). \end{cases}$$

- **a.** Calcule $\frac{\partial f}{\partial x}(0,0) \in \frac{\partial f}{\partial y}(0,0)$.
- **b.** Determine $\frac{\partial f}{\partial x}(x,y)$ e $\frac{\partial f}{\partial y}(x,y)$ e mostre que são descontínuas em (0,0).
- \mathbf{c} . Verifique que f é diferenciável na origem.

Exercício 7. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x(x-y)}{x+y} & se \ x+y \neq 0; \\ 0 & se \ x+y = 0. \end{cases}$$

- **a.** Calcule $\frac{\partial f}{\partial x}(0,0) \in \frac{\partial f}{\partial y}(0,0)$.
- **b.** Existe $\frac{\partial f}{\partial x}$ nos pontos da forma (a, -a) com $a \neq 0$?
- c. Calcule uma expressão para a função derivada parcial $\frac{\partial f}{\partial x}$ e estude a sua continuidade.
- **d.** Calcule $f'_{(1,-1)}(2,3)$.
- **e.** Estude a continuidade de f em \mathbb{R}^2 .
- **f.** Estude a diferenciabilidade de f em \mathbb{R}^2 .
- g) Calcule $\nabla f(1,0)$.
- h) Calcule $f'_{(1,1)}(0,0)$ e $f'_{(1,1)}(1,0)$.

Exercício 8. Seja h uma função diferenciável em \mathbb{R} e f a função definida pela expressão

$$f(x,y) = \tan(x)h(x + \cos y).$$

Mostre que para todo o ponto $(x,y) \in D_f$ se tem

$$\sin(y)\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = f(x,y)\frac{\sin(y)}{\cos^2 x}.$$

Exercício 9. Seja $f \in C^2(\mathbb{R})$ e g a função definida por $g(x,y) = f\left(\frac{y}{x}\right)$. Mostre que para todo o ponto $(x,y) \in D_g$, se tem

$$x\frac{\partial^2 g}{\partial x^2}(x,y) + y\frac{\partial^2 g}{\partial y \partial x}(x,y) = -\frac{\partial g}{\partial x}(x,y).$$

Exercício 10. Seja f uma função diferenciável em \mathbb{R} e g a função definida pela expressão

$$g(x,y) = \cos^2(x)f(y + \tan(x)).$$

Prove que para todo o ponto $(x, y) \in D_g$ se tem

$$\frac{1}{\cos^2(x)}\frac{\partial g}{\partial y}(x,y) - \frac{\partial g}{\partial x}(x,y) = 2\tan(x)g(x,y).$$

Exercício 11. Usando a regra da derivada da função composta, calcule $\frac{dw}{dt}$ sabendo que

$$w = xyf(z), x = t^2, y = e^t e z = \ln(t^2),$$

onde f é uma função real de variável real diferenciável.

Exercício 12. Seja F uma função real de variável real diferenciável e $z = xy + xF\left(\frac{y}{x}\right)$. Mostre que para todo o $x \neq 0$ se tem

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + z.$$

Exercício 13. Sejam ϕ , ψ : $\mathbb{R} \to \mathbb{R}$ funções de classe C^2 e $z = x\phi(x+y) + y\psi(x+y)$. Mostre que

$$\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0.$$

Exercício 14. Seja $u: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe C^1 e $v: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $v(\rho, \theta) = (\rho \cos(\theta), \rho \sin(\theta))$. Mostre que $\phi = u \circ v$ é verifica

$$\left(\frac{\partial \phi}{\partial \rho}\right)^2 + \frac{1}{\rho^2} \left(\frac{\partial \phi}{\partial \theta}\right)^2 = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2.$$

Exercício 15. Considere as funções $g: \mathbb{R}^3 \to \mathbb{R}^2$ definida por $g(x,y,z) = (e^{x^2+y^2+z^2}, 1-xyz^2)$ e $f: \mathbb{R}^2 \to \mathbb{R}^2$, uma função cuja matriz jacobiana no ponto $(e^3,2)$ é dada por

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & 2 \end{array}\right].$$

Determine a matriz jacobiana de $f \circ g$ no ponto (1, -1, 1).

Exercício 16. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável tal que f(1) = f'(1) = 2 e f(2) = f'(2) = 1. Considere $g: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$g(x, y, z) = (f(x^2) + f(x^2 + y^2), f(xyz)).$$

a. Calcule a matriz jacobiana de g.

b. Sendo $h: \mathbb{R}^2 \to \mathbb{R}$ definida por $h(x,y) = e^{3-x^2+yx}$, justifique que $h \circ g$ é diferenciável no ponto (1,1,2) e calcule a matriz jacobiana de $h \circ g$ nesse ponto.

Exercício 17. Considere $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por

$$f(x,y) = \begin{cases} \frac{x^{5/3}y^2}{(x^2 + y^2)^{4/3}} & se \ (x,y) \neq (0,0) \\ 0 & se \ (x,y) = (0,0). \end{cases}$$

Seja $g: \mathbb{R} \to \mathbb{R}^2$ tal que g(t) = (t, t), para todo $t \in \mathbb{R}$. Considere ainda a função $F = f \circ g$.

- **a.** Indique o valor de F(t) para cada $t \in \mathbb{R}$.
- **b.** Calcule o valor de F'(0) de duas formas:
- i) utilizando a expressão de F(t) obtida na alínea anterior;
- ii) através da regra da derivação da função composta, admitindo que f é diferenciável.
- c. O que pode concluir do facto de ter obtido diferentes resultados nas alíneas i) e ii)?

Exercício 18. Determine os extremantes e correspondentes extremos da função f, nos seguintes

- **a.** $f(x,y) = (x^2 + y^2) e^y;$ **b.** $f(x,y) = x^2 + 4xy y^2 8x 6y;$
- **c.** f(x, y, z) = xy + xz;
- **d.** $f(x,y) = x\sin(y)$; **e.** $f(x,y) = x^2 3xy^2 + 2y^4$.

Exercício 19. Averigue se o ponto $(-\frac{1}{4}, \frac{1}{2}, 0)$ é extremante da função definida por

$$f(x, y, z) = x^2 + 2xy^2 + y^4 + z^2.$$

Exercício 20. Determine, em função do parâmetro $\beta \in \mathbb{R}$, os extremantes da função $f: \mathbb{R}^3 \to \mathbb{R}$ tal que

$$f(x, y, z) = xy + xz - x^3 - y^2 - \beta x.$$

Exercício 21. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por

$$f(x,y) = e^{xy + xy^2 + x^2}.$$

Determine os pontos críticos de f e classifique-os.

Exercício 22. Considere $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por $f(x,y) = (x-y)^2 - x^4 - y^4$.

- **a.** Prove que os pontos críticos de f são (1,-1), (-1,1) e (0,0).
- **b.** Indique, justificando, se os pontos (1,-1) e (-1,1) são extremantes da função f e, caso o sejam, determine os valores extremos de f.

4

c. Prove que o ponto (0,0) não é extremante da função f.