# Ratemaking and Experience Rating Master on Actuarial Science

# Alfredo D. Egídio dos Reis



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

#### Programme

- Introduction and concepts
- Oredibility theory
  - The credibility formula
  - Classical and Bayesian methodology
  - 8 Bühlmann's model
  - Ø Bühlmann-Straub's model
  - 6 Exact credibility
  - 6 Parameter estimation
- Bonus-malus systems
  - Introduction and definitions
  - Ø Markov analysis
  - 8 Evaluation measures
- Ratemaking and GLM. Applications

| Intro  | Credibility theory                      | Bonus-malus systems                     |
|--------|-----------------------------------------|-----------------------------------------|
| 0000   | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |
| Refere | ences                                   |                                         |

- Denuit, M.; Maréchal, X.; Pitrebois, S. & Walhin, J-F. (2007). *Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-malus Systems*, John Wiley & Sons, Chichester, England.
- Klugman, S.A.; Panjer, H.H. & Willmot, G.E. (2008 or 2012). Loss Models, From Data to Decisions, 3rd or 4th editions, John Wiley, Hoboken NJ.
- Kaas, R., Goovaerts, M., Dhaene, J. & Denuit, M. (2008).
   Modern Actuarial Risk Theory: Using R, 2nd edition, Springer.

うして ふゆう ふほう ふほう うらつ

 Ohlsson, E. & Johansson, B. (2010). Non-Life Insurance Pricing with Generalized Linear Models, EAA series/EAA Lecture Notes, Springer.

# Ratemaking:

- "Pricing" insurance, calculation of Insurance Premia
- Building a **tariff** for a portfolio, or portfolios somehow connected
- Experience rating: adjust future premiums based on past experience
- **9** Prior and Posterior Ratemaking

Insurance **Premium**: Price for buying insurance (for a period). Two components:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Economic criteria: market price, admin costs
- Actuarial criteria:
  - based on technical aspects of the risk
  - Meant to cover future claims
  - We only consider this here

#### Some concepts

## • Tariff:

- It's a list of prices
- System of premiums for the risks of a portfolio (homogeneous)
- Sets a base premium (homogeneous)
- plus a set of bonus/malus (heterogeneous)
- Exposure: Risk volume, in risk units, no.
- Risk unit: Commonly, a policy; sometimes a set of policies
- Claim: an accident generates a claim, monetary amount
- Claim frequency: number of claims, distribution
- Severity: amount of the claim
- Loss reserving
- Pure premium: Risk mean, loss mean
- Loss ratio: paid claims/premiums

Let X be a given risk in a portfolio, with Pure Premium E(X), unknown:

• If the risk is has been sufficiently observed

$$E(X) \simeq \overline{X}$$
 (Full Credibility)

• If not, use Partial Credibility, Credibility Formula:

$$E(X) \simeq z\overline{X} + (1-z)M$$
$$z = \frac{n}{n+k}$$

- Credibility factor: z,  $0 \le z < 1$
- n: No. observations; k: some positive constant
- *M*: Externally obtained mean (*Manual rate*).

#### The credibility formula

### Example

A given risk  $X|\theta \frown Bin(1;\theta)$ , obs'd 10 yrs, 20 risks.  $\bar{X} = 0.0145$ .

| Ano<br>i | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14       | 15  | 16  | 17  | 18       | 19       | 20  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|-----|-----|-----|----------|----------|-----|
| 1        |     | -   | 1   |     |     |     |     |     |     |     | 1   |     |     |          |     | 1 1 | 1   | 1        |          |     |
| 2        |     |     |     |     |     |     | 1   |     | 1   |     | 1   |     |     |          |     |     | 1   |          |          |     |
| 3        |     |     | 1   |     |     |     | 1   |     | 1   | 1   |     |     |     |          |     |     |     |          |          |     |
| 4        |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     | 1   |          |          |     |
| 5        |     |     |     |     |     |     |     |     | 1   |     | 1   |     |     |          |     |     |     |          |          |     |
| 6        |     |     |     |     |     | 1   |     |     | 1   |     |     | 1   |     |          |     |     |     | -        |          |     |
| 7        |     |     |     |     |     |     |     |     | 1   |     |     |     |     | 1        |     |     | 1   |          | <u> </u> |     |
| 8        |     |     |     |     |     |     |     |     |     |     |     | 1   |     |          |     |     |     | <u> </u> |          |     |
| 9        |     |     |     |     |     | 1   |     |     |     |     | 1   |     | 1   | L        |     |     |     |          |          |     |
| 10       |     |     | _   |     |     |     |     |     | 1   |     |     | 1   |     | <u> </u> |     |     | 1   |          | <u> </u> |     |
| Û.       | 0.0 | 0,0 | 0,2 | 0,0 | 0,0 | 0,2 | 0,2 | 0,0 | 0,6 | 0,1 | 0,4 | 0,3 | 0,1 | 0,1      | 0,0 | 0,0 | 0,5 | 0,1      | 0,1      | 0,0 |

Intro Credibility theory Bonus-malus systems

#### Limited Fluctuation Theory: Classical approach

- From some computed  $n : n > n_0$  use Full credibility;
- **2** Otherwise: Use Partial credibility. But what M, k?
- **@** Greatest Accuracy Theory: Bayesian approach.

### Example (Ex. 20.1, Classical, Full credibility)

Past losses:  $X_1, X_2, \ldots X_n$ , estimate  $\xi = E[X_j]$ . (Normal) Find *n*:

$$\Pr \left\{ -r\xi \le \bar{X} - \xi \le r\xi \right\} \ge p$$
$$\Pr \left\{ \left| \frac{\bar{X} - \xi}{\sigma / \sqrt{n}} \right| \le \frac{r\xi \sqrt{n}}{\sigma} \right\} \ge p$$

Suppose 10 obs: 6 "0's" and 253, 398, 439, 756, r = 0.05, p = 0.9

$$n \ge \left(\frac{z_{\alpha}}{r}\right)^2 \left(\frac{\sigma}{\xi}\right)^2 = 1082.41 \left(\frac{267.89}{184.6}\right)^2 = 2279.51$$

Classical and Bayesian approach

Example (Ex. 20.1 cont'd, Classical, Partial credibility)

10 obs: 6 "0's" and 253, 398, 439, 756, r = 0.05, p = 0.9

 $n \ge 2279.51$ 

n = 10 does not deserve full credibility. Credibility Formula:

$$E(X) \simeq z\overline{X} + (1-z)M.$$
 (z=?)

$$z = \frac{n}{n+k}$$

$$z = \min\left\{\frac{\xi}{\sigma}\sqrt{\frac{n}{\lambda_0}}; 1\right\}$$

$$z = 0.06623$$

 $P_c = 0.06623(184.6) + 0.93377(225) = 222.32$ 

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Exercises 20.1, 20.3, pg 565

Classical and Bayesian approach

# Theory, outgrowth of Buhlman's (1967) paper

### Example (Ex. 20.9, Bayesian approach)

Two types of drivers: *Good* and *Bad*. Good are 75% of the population and in one year have have 0 claims w.p. 0.7, 1 w.p. 0.2 and 2 w.p. 0.1. Bad drivers, respectively, 25%, 0.5, 0.3, 0.2. when a driver buys insurance insurer does not know it's category. We assign an unknown risk parameter,  $\theta$ .

| Example (Ex. 20.9 cont.) |                       |                       |   |                                    |  |  |  |  |  |
|--------------------------|-----------------------|-----------------------|---|------------------------------------|--|--|--|--|--|
|                          |                       |                       |   |                                    |  |  |  |  |  |
| x                        | $P(X = x \theta = G)$ | $P(X = x \theta = B)$ | θ | $P(\Theta = \theta) = \pi(\theta)$ |  |  |  |  |  |
| 0                        | 0.7                   | 0.5                   | G | 0.75                               |  |  |  |  |  |
| 1                        | 0.2                   | 0.3                   | В | 0.25                               |  |  |  |  |  |
| 2                        | 0.1                   | 0.2                   |   |                                    |  |  |  |  |  |

Classical and Bayesian approach

Some basic concepts:

*Recap* Joint & conditional distr. & expectation Bivariate random variable: (X, Y). D.f.  $F_{X,Y}$ , pdf or pf  $f_{X,Y}$ 

- $f_{X,Y}(x, y)$ , marginals  $f_X$ ,  $f_y$ . If independent:  $f_{X,Y} = f_X f_Y$ .
- Conditional (Conditional ind.:  $f_{X,Y|Z} = f_{X|Z}f_{Y|Z}$ ):

$$\begin{split} f_{X|Y}(x) &= \frac{f_{X,Y}(x,y)}{f_Y(y)} & f_{Y|X}(y) = \frac{f_{X,Y}(x,y)}{f_X(x)} \\ f_{X,Y}(x,y) &= f_{X|Y}(x) f_Y(y) & f_{X,Y}(x,y) = f_{Y|X}(y) f_X(x) \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Classical and Bayesian approach

Marginals

$$\begin{aligned} f_X(x) &= \int f_{X,Y}(x,y) dy; \\ f_X(x) &= \int f_{X|Y}(x) f_Y(y) dy; \end{aligned} \quad \begin{aligned} f_Y(y) &= \int f_{X,Y}(x,y) dx \\ f_Y(x) &= \int f_{X|Y}(x) f_Y(y) dy; \end{aligned}$$

• Expectations, Iterated expectation

$$E[E(X|Y)] = E[X]; E[E(Y|X)] = E[Y]$$
  
$$V[X] = E[V(X|Y)] + V[E(X|Y)]$$

Cov[X, Y] = E[Cov(X, Y|Z)] + Cov[E(X|Z); E(Y|Z)]

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Classical and Bayesian approach

### Example (Ex. 20.9 cont'd)

Suppose we observed for a particular risk:  $\mathbf{X} = (X_1, X_2) = (0; 1)$ . Given  $\theta$  obs are independent.

$$\begin{aligned} f_{\mathbf{X}}(0,1) &= \sum_{\theta} f_{\mathbf{X}|_{\theta}}(0,1|\theta) \pi(\theta) = \sum_{\theta} f_{X_{1}|\theta}(0|\theta) f_{X_{2}|\theta}(1|\theta) \pi(\theta) \\ &= 0.7(0.2)(0.75) + 0.5(0.3)(0.25) = 0.1425 \\ f_{\mathbf{X}}(0,1,x_{3}) &= \sum_{\theta} f_{\mathbf{X},\mathbf{X}_{3}|_{\theta}}(0,1,x_{3}|\theta) \pi(\theta) \\ &= \sum_{\theta} f_{X_{1}|\theta}(0|\theta) f_{X_{2}|\theta}(1|\theta) f_{X_{3}|\theta}(x_{3}|\theta) \pi(\theta) \\ f(0,1,0) &= 0.09995; \ f(0,1,1) = 0.003225; \ f(0,1,2) = 0.01800 \end{aligned}$$

Predictive and Posterior distribution

 $\begin{array}{lll} f(0|0,1) &=& 0.647368; \ f(1|0,1)=0.226316; \ f(2|0,1)=0.126316\\ \pi(G|0,1) &=& 0.736842; \ \pi(B|0,1)=0.263158 \end{array}$ 

Classical and Bayesian approach

6

## Example (Ex. 20.11)

et 
$$X|\theta \frown Poisson(\theta)$$
 and  
 $D \frown Gamma(\alpha, \beta) \Rightarrow X \frown NBinomial(\alpha, \beta)$   
 $E(X|\theta) = \theta \Rightarrow$   
 $E(X) = E(E(X|\Theta)) = E(\Theta) = \alpha\beta$   
 $V(X|\theta) = \theta \Rightarrow$   
 $V(X) = V(E(X|\Theta)) + E(V(X|\Theta)) = \alpha\beta (1 + \beta)$ 

#### Example (Ex. 20.10)

Let  $X|\theta \frown \exp(1/\theta)$ , mean  $1/\theta$ , and  $\Theta \frown Gamma(4, 0.001)$ .

$$f(x|\theta) = \theta e^{-\theta x}, x, \theta > 0$$
  
$$\pi(\theta) = \theta^3 e^{-1000\theta} 1000^4 / 6, \theta > 0$$

Classical and Bayesian approach

#### Example (Ex. 20.10)

Suppose a risk had 3 claims of 100, 950, 450.

$$f(100, 950, 450) = \int_0^\infty f(100, 950, 450|\theta) \pi(\theta) d\theta$$
  
=  $\int_0^\infty f(100|\theta) f(950|\theta) f(450|\theta) \pi(\theta) d\theta$   
=  $\frac{1,000^4}{6} \frac{6!}{2,500^7}$ 

Similarly,

$$f(100, 950, 450, x_4) = \frac{1,000^4}{6} \frac{7!}{(2,500 + x_4)^8}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Classical and Bayesian approach

### Example (Ex. 20.10)

Predictive density, posterior density

$$f(x_4|100, 950, 450) = \frac{7(2500)^7}{(2, 500 + x_4)^8} \rightarrow Pareto(7; 2500)$$
  
$$\pi(\theta|100, 950, 450) = \theta^6 e^{-2500\theta} 2500^7 / \Gamma(7)$$
  
$$\rightarrow Gamma(7; 1/2500)$$

(Conjugate distributions) Risk premium and *potential* estimates:

$$\mu_{4}(\theta) = E(X_{4}|\theta) =?$$

$$E(X_{4}|100,950,450) = 416,67$$

$$\mu = E(X_{4}) = E(1/\Theta) = 1000/3 = 333.3(3)$$

$$\bar{X} = 500$$

$$\mu < E(X_{4}|100,950,450) < \bar{X}$$

Exercices 20.20, 20.23, p. 605.

Classical and Bayesian approach

# Bayesian approach

From now onwards, assume a Bayesian approach:

Let a portfolio of risks, homogeneous, but "different":

- Homogeneous: risks follow the same distribution family
- Heterogeneous: distribution parameter is different.
- A given risk comes attached with a paramenter  $\theta$ :
  - Fixed, but unknown, not observable;
  - Only claims are observed:  $(X_1, X_2, ..., X_n) = \mathbf{X};$
  - $\theta$  is the hidden aspects of the risk, which differs from others;
  - Like classical statistics: Use past data **X** to predict  $X_{n+1}$
  - Risk (pure) Premium:  $E(X_{n+1}|\theta) = \mu_{n+1}(\theta)$ .
  - Opposed to Collective (pure) Premium:  $E(X_{n+1}) = \mu_{n+1}$ .

Classical and Bayesian approach

#### Hypothesis

H1 Given  $\theta$ ,  $X_1|\theta$ ,  $X_2|\theta$ , ...,  $X_n|\theta$ ,  $X_{n+1}|\theta$  are (conditionally) independent.

 $\theta$  is realization of a random variable:  $\Theta \frown \pi(\theta)$ 

H2 The different risks in the portfolio are independent.

### Premium for the next year:

- Risk Premium:  $E(X_{n+1}|\theta) = \mu_{n+1}(\theta)$ . Unknown.
- Collective Premium:  $E(E(X_{n+1}|\theta)) = \mu_{n+1}$ . In general  $\mu_{n+1}(\theta) \neq \mu_{n+1}$
- **Bayesian premium** (mean of the predictive dist. and Bayes estimate for the *squared-error loss*):

$$E(X_{n+1}|\mathbf{X}) = \int x f_{X_{n+1}|\mathbf{X}}(x|\mathbf{x}) dx$$
$$= \int \mu_{n+1}(\theta) \pi_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

Classical and Bayesian approach

Some Basic concepts:

 $\mathbf{X} = (X_1, X_2..., X_n)$ ; Predictive distribution:  $f_{X_{n+1}|\mathbf{X}}(x|\mathbf{x})$ ; Prior distr.:  $\pi_{\Theta}(\theta)$ ; and Posterior dist.:  $\pi_{\Theta|\mathbf{X}}(\theta|\mathbf{x})$ 

Posterior dist.:

$$\pi_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) = \frac{f_{\Theta,\mathbf{X}}(\theta,\mathbf{x})}{f_{\mathbf{X}}(\mathbf{x})} = \frac{f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta)\pi(\theta)}{\int f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta)\pi(\theta)d\theta}$$

• Preditive dist.:

$$\begin{aligned} f_{X_{n+1}|\mathbf{X}}(x|\mathbf{x})dx &= \frac{f_{X_{n+1};\mathbf{X}}(x;\mathbf{x})}{f_{\mathbf{X}}(\mathbf{x})} = \frac{\int f_{X_{n+1},\mathbf{X}|\Theta}(x,\mathbf{x}|\theta)\pi_{\Theta}(\theta)d\theta}{f_{\mathbf{X}}(\mathbf{x})} \\ &= \int f_{X_{n+1}|\Theta}(x|\theta)\frac{f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta)\pi_{\Theta}(\theta)d\theta}{f_{\mathbf{X}}(\mathbf{x})} \\ &= \int f_{X_{n+1}|\Theta}(x|\theta)\pi_{\Theta|\mathbf{X}}(\theta|\mathbf{x})d\theta \end{aligned}$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Classical and Bayesian approach

#### Definition (Credibility Premium)

The Credibility (pure) Premium  $\widetilde{\mu_{n+1}}(\theta) = \alpha_0 + \sum_{j=1}^n \alpha_j X_j$  is an estimator of linear form, such that:

$$\min Q = E\left\{ \left[ \mu_{n+1}(\Theta) - \left( \alpha_0 + \sum_{j=1}^n \alpha_j X_j \right) \right]^2 \right\}$$

Solution: Find  $\alpha_0, \alpha_1, ..., \alpha_n$ :

$$\frac{\partial}{\partial \alpha_0} Q = -2E \left\{ \mu_{n+1}(\Theta) - \left( \alpha_0 + \sum_{j=1}^n \alpha_j X_j \right) \right\} = 0$$
  
$$\frac{\partial}{\partial \alpha_i} Q = -2E \left\{ \left[ \mu_{n+1}(\Theta) - \left( \alpha_0 + \sum_{j=1}^n \alpha_j X_j \right) \right] X_i \right\} = 0, \ i = 1, ..., n$$

 $\theta$ ,  $X_1$ ,  $X_2$ , ...,  $X_n$ ,  $X_{n+1}$  are all random variables.

▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲ 圖 → のへの

Classical and Bayesian approach

# Equivalent to

$$E[\mu_{n+1}(\Theta)] = \widetilde{\alpha}_0 + \sum_{j=1}^n \widetilde{\alpha}_j E[X_j] = E\left(\widetilde{\mu_{n+1}}(\theta)\right);$$
  

$$E[\mu_{n+1}(\Theta)X_i] = \widetilde{\alpha}_0 E[X_i] + \sum_{j=1}^n \widetilde{\alpha}_j E[X_i, X_j], i = 1, ..., n.$$

### Or,

## Normal equations

 $\widetilde{\alpha}_0, \widetilde{\alpha}_1, \ldots, \widetilde{\alpha}_n$  such that:

$$E(X_{n+1}) = \widetilde{\alpha}_0 + \sum_{j=1}^n \widetilde{\alpha}_j E[X_j] = E\left(\widetilde{\mu_{n+1}}(\theta)\right);$$
  
(unbiasedness equation)  
$$Cov(X_i, X_{n+1}) = \sum_{j=1}^n \widetilde{\alpha}_j Cov[X_i, X_j], i = 1, ..., n.$$

Classical and Bayesian approach

We know that  

$$E[X_{n+1}] = E[E[X_{n+1}|\mathbf{X}]] = E[E[X_{n+1}|\Theta]] = E[\mu_{n+1}(\Theta)];$$
  
 $\mu_{n+1}(\theta) = E[X_{n+1}|\theta].$ 

 $\widetilde{\mu_{n+1}}(\theta)$  also minimises,  $\mathbf{X} = (X_1, \dots, X_n)$ ,

$$\min Q = \min E \left\{ \left[ \mu_{n+1}(\Theta) - \left( \alpha_0 + \sum_{j=1}^n \alpha_j X_j \right) \right]^2 \right\}$$
$$= \min E \left\{ \left[ E \left[ X_{n+1} | \mathbf{X} \right] - \left( \alpha_0 + \sum_{j=1}^n \alpha_j X_j \right) \right]^2 \right\}$$
$$= \min E \left\{ \left[ X_{n+1} - \left( \alpha_0 + \sum_{j=1}^n \alpha_j X_j \right) \right]^2 \right\}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Bühlmann's model

# Bühlmann's model

### Initial hypothesis

- Given  $\theta$ ,  $X_1|\theta$ ,  $X_2|\theta$ , ...,  $X_n|\theta$ ,  $X_{n+1}|\theta$  are (conditionally) independent.
  - $\theta$  is realization of a random variable:  $\Theta \frown \pi(\theta)$
- 2 The different risks in the portfolio are independent.

# Addition to **H1**

• Given  $\theta$ ,  $X_1|\theta$ ,  $X_2|\theta$ , ...,  $X_n|\theta$ ,  $X_{n+1}|\theta$  have the same mean and variance:

$$u(\theta) = E(X_j|\theta)$$
  
 $v(\theta) = Var(X_j|\theta)$ 

Let

$$\mu = E\left[\mu(\theta)\right], \ v = E\left[v(\theta)\right], \ a = \underbrace{Var}_{\text{result}}\left[\mu(\theta)\right]_{\text{result}}$$

Bühlmann's model

# Solution:

$$\widetilde{\mu_{n+1}}(\theta) = \widetilde{\alpha}_0 + \sum_{j=1}^n \widetilde{\alpha}_j X_j = z\overline{X} + (1-z)\mu$$
$$z = \frac{n}{n+k}$$
$$k = v/a$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Bühlmann's model

- Jet z: called Bühlmann's credibility factor
- 2 Credibility premium is a weighted average from  $\overline{X}$  and  $\mu$ .
- $\bigcirc$   $z \rightarrow 1$  when  $n \rightarrow \infty$ , more credit to sample mean
- If portfolio is fairly homogeneous w.r.t. Θ, then µ(Θ) does not vary much, hence small variability. Thus a is small relative to v → k is large, z is closer to 0
- Solution Conversely, if the portfolio is heterogeneous, z is closer to 1
- Bühlmann's model is the simplest credibility model, no change over time

Bühlmann's model

# Proof

Estimator proposed for given risk, say 
$$j: \, \hat{m}_j = lpha + eta ar{X}_{.j}$$
 , so that

$$\min R = \min \mathbf{E}\left[\left(\mu(\theta_j) - \hat{m}_j\right)^2\right] = \min \mathbf{E}\left[\left(\mu(\theta_j) - \alpha - \beta \bar{X}_{j}\right)^2\right]$$

Set

$$\mathbb{E}\left[\left(\left(\mu(\theta_{j}) - \beta \bar{X}_{j}\right]\right) - \alpha\right)^{2}\right] = \mathbb{V}[\mu(\theta_{j}) - \beta \bar{X}_{j}] \\ + \left(\mathbb{E}\left[\mu(\theta_{j}) - \beta \bar{X}_{j}\right] - \alpha\right)^{2}$$

Minimizing  $\alpha$ , such that:

$$\begin{array}{rcl} \alpha^* &=& \mathrm{E}[\mu(\theta_j) - \beta^* \bar{X}_{,j}] = \mathrm{E}[\mu(\theta_j)] - \beta^* \, \mathrm{E}[\bar{X}_{,j}].\\ \alpha^* &=& (1 - \beta^*) \, \mathrm{E}[\mu(\theta_j)], \, \mathrm{since}\\ \mathrm{E}[\bar{X}_{,j}] &=& \mathrm{E}[\mathrm{E}[\bar{X}_{,j}|\theta_j]] = \mathrm{E}[\mu(\theta_j)] \end{array}$$

Bühlmann's model

# Proof (cont'd)

2nd part

$$\begin{aligned} \mathbf{V}[\mu(\theta_j) - \beta \, \bar{X}_{.j}] &= \mathbf{E}[\mathbf{V}[\mu(\theta_j) - \beta \, \bar{X}_{.j}|\theta_j]] + \mathbf{V}[\mathbf{E}[\mu(\theta_j) - \beta \, \bar{X}_{.j}|\theta_j]] \\ &= \frac{\beta^2}{n} \mathbf{E}[v(\theta)] + (1 - \beta)^2 \mathbf{V}[\mu(\theta_j)]. \\ &= \frac{\beta^2}{n} v + (1 - \beta)^2 \mathbf{a}. \\ \mathbf{V}[\bar{X}_{.j}|\theta_j] &= \frac{1}{n} \mathbf{V}[X_{ij}|\theta_j] \end{aligned}$$

Differentiating w.r.t.  $\beta$  and equating,

$$\begin{aligned} &\frac{2\beta}{n}v-2(1-\beta)a=0\;,\\ &\beta^* &=& \frac{a}{a+\frac{1}{n}v}=\frac{n}{n+v/a} \end{aligned}$$

#### Bühlmann's model

#### Theorem

Let  $P_{c,n+1}$  denote Bühlmann's credibility premium for year n + 1, n = 1, 2, ..., based on the n previous annual observations.  $P_{c,n+1}$  can be recursively calculated as the weighted average

$$P_{c,n+1} = lpha_n X_n + (1-lpha_n) P_{c,n}$$
 ,

with weight  $\alpha_n = z/n$ , where z is Bühlmann's credibility factor.

$$P_{c,n+1} = \frac{1}{n+k} \left( \sum_{i=1}^{n-1} X_i + X_n \right) + \frac{k}{n+k} \mu$$
  
=  $\frac{1}{n+k} X_n + \frac{n-1+k}{n+k} \left( \frac{n-1}{n-1+k} \bar{X}_{n-1} + \frac{k}{n-1+k} \mu \right)$   
=  $\alpha_n X_n + (1-\alpha_n) P_{c,n}$ .

#### Bühlmann's model

### Example (Ex.20.9 cont'd)

$$\begin{array}{ll} \mu_3(G) = 0.4 & \mu_3(B) = 0.7 \\ E[X_3|0,1] = 0.478948 & \mu_3 = 0.475 \quad \bar{X} = 0.5 \\ a = V[\mu(\theta)] = 0.016875 & v = E[v(\theta)] = 0.4825 \\ k = v/a = 28.5926 & z = 2(2+k)^{-1} = 0.0654 \\ z\bar{X} + (1-z)\mu = 0.0654(0.5) + 0.9346(0.475) = 0.4766 \end{array}$$

### Example (Ex. 20.10. Exact credibility example)

$$E(X_4|100, 950, 450) = 416, 67; \quad \bar{X} = 500$$
  

$$\mu = E(X_4) = E(1/\Theta) = 1000/3 = 333.3(3)$$
  

$$z\bar{X} + (1-z)\mu = E(X_4|100, 950, 450).$$

Exercises 20.24-27, p. 606.

Intro Credibility theory Bonus-malus systems

Bühlmann-Straub's model

# Bühlmann-Straub's model

### Bühlmann's H1 is changed:

• Given  $\theta$ ,  $X_1|\theta$ ,  $X_2|\theta$ , ...,  $X_n|\theta$ ,  $X_{n+1}|\theta$  have the same mean, variance:

$$E(X_j|\theta) = \mu(\theta) \text{ (same)}$$
  
Var  $(X_j|\theta) = \frac{v(\theta)}{m_j}$ .

- m<sub>j</sub> is some known constant measuring exposure
- Ex: group insurance where its size changes
- Initially, the model was first presented for reinsurance.
- $Var(X_j) = E[Var(X_j|\theta)] + Var[E(X_j|\theta)] = \frac{v}{m_j} + a$

Bühlmann-Straub's model

#### Solution:

$$P_{c} = \tilde{\alpha}_{0} + \sum_{j=1}^{n} \tilde{\alpha}_{j} X_{j} = z\bar{X} + (1-z)\mu$$
$$z = \frac{m}{m+k} \quad k = v/a$$
$$\bar{X} = \sum_{j=1}^{n} \frac{m_{j}}{m} X_{j} \quad m = \sum_{j=1}^{n} m_{j} \text{ (total exposure)}$$

Obs.:

- Factor z depends on m (total exposure)
- $\bar{X}$  is a weighted average,  $m_j/m$  is the weight
- $m_j X_j$  is the total loss of the group in year j
- (Total) Credibility premium for the group, next year:

$$m_{n+1}\left[z\bar{X}+(1-z)\mu\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Bühlmann-Straub's model

#### Example (Ex.20.19)

 $N_j$ : No. of claims in year *j* for a group policy holder with risk parameter and  $m_j$  individuals.  $N_j \frown Poisson(m_j\theta)$ . Let  $X_j = N_j/m_j$ .  $\Theta \frown Gamma(\alpha, \beta)$ .

$$\mathbb{E}(X_j|\theta) = \mu(\theta) = \theta; \ \mathbb{V}(X_j|\theta) = \mathbb{V}(N_j/m_j|\theta) = \frac{v(\theta)}{m_j} = \frac{\theta}{m_j}$$
$$\mu = \mathbb{E}(\Theta) = \alpha\beta; \ a = \mathbb{V}(\Theta) = \alpha\beta^2; \ v = \mathbb{E}(\Theta) = \alpha\beta.$$
$$k = v/a = 1/\beta; \ z = \frac{m\beta}{m\beta + 1}$$
$$P_c = \frac{m\beta}{m\beta + 1}\bar{X} + \frac{1}{m\beta + 1}\alpha\beta$$

#### Exact credibility

#### Example (Ex.20.19)

 $N_j$ : No. of claims in year j for a group policy holder with risk parameter  $\theta$  and  $m_j$  individuals, j = 1, ..., n.  $N_j \frown Poisson(m_j\theta)$ . Let  $X_j = N_j / m_j$ .  $\Theta \frown Gamma(\alpha, \beta)$ . Bayesian premium (mean of the preditive dist.):

$$\mathbb{E}(X_{n+1}|\mathbf{X}) = \mathbb{E}(\mathbb{E}(X_{n+1}(\theta)|\theta, \mathbf{X})) = \mathbb{E}(\mu_{n+1}(\theta)|\mathbf{X})$$
$$= \mathbb{E}(\theta|\mathbf{X})$$

$$\Pr[N_j = n|\theta] = \Pr[X_j m_j = n|\theta] = \Pr[X_j = n/m_j|\theta], n \in \mathbb{N}_0$$
$$= (m_j \theta)^n e^{-m_j \theta} / n!; \pi(\theta) = \frac{\theta^{\alpha - 1} e^{-\theta/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$$
$$\pi_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) \propto \left[\prod_{i=1}^n f_{X_j|\theta}(x_j|\theta)\right] \pi(\theta);$$
$$f_{X_j|\theta}(x_j|\theta) = \Pr[X_j = x|\theta]$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖 - のぬの

#### Exact credibility

#### Example (Ex.20.19)

 $N_j$ : No. of claims in year j for a group policy holder with risk parameter and  $m_j$  individuals, j = 1, ..., n.  $N_j \frown Poisson(m_j\theta)$ . Let  $X_j = N_j / m_j$ .  $\Theta \frown Gamma(\alpha, \beta)$ .

$$\Theta|\mathbf{x} \frown \mathsf{Gamma}\left(lpha_* = lpha + \sum_{j=1}^n m_j x_j; eta_* = (1/eta + m)^{-1}
ight)$$

$$\mathbb{E}(X_{n+1}|\mathbf{X}=\mathbf{x}) = \alpha_*\beta_* = \frac{\alpha + \sum_{j=1}^n m_j x_j}{(1/\beta + m)}$$
$$= \frac{m\beta}{m\beta + 1}\bar{X} + \frac{1}{m\beta + 1}\alpha\beta = P_c$$

Exercises 20.28, 29, p. 608

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

#### Intro Credibility theory

#### Bonus-malus systems

Exact credibility

• Recap Credibility Premium,

$$\widetilde{\mu_{n+1}}(\theta):\min\left\{Q=E\left\{\left[\mu_{n+1}(\theta)-\left(\alpha_0+\sum_{j=1}^n\alpha_jX_j\right)\right]^2\right\}\right\}$$

• Now, don't impose a linear estimator. Let m(X), some function of X, and find estimator  $\overset{*}{m}(X)$  such that:

$$\min \left( E \left\{ \left[ \mu_{n+1}(\theta) - m(\mathbf{X}) \right]^2 \right\} = E \left[ E \left\{ \left[ \mu_{n+1}(\theta) - m(\mathbf{X}) \right]^2 | \mathbf{X} \right\} \right] \right)$$
  
or minimize  $E \left\{ \left[ \mu_{n+1}(\theta) - m(\mathbf{X}) \right]^2 | \mathbf{X} \right\} =$   
 $= V \left[ \mu_{n+1}(\theta) | \mathbf{X} \right] + \left( E \left[ \mu_{n+1}(\theta) | \mathbf{X} \right] - m(\mathbf{X}) \right)^2$   
 $\Rightarrow \overset{*}{m}(\mathbf{X}) = E \left[ \mu_{n+1}(\theta) | \mathbf{X} \right]$ 

**Bayes estimator**, relative to Square Loss function and prior  $\pi(\theta) = -\infty$ 

Exact credibility

Exact Credibility: When  $\widetilde{\mu_{n+1}}(\theta) = \overset{*}{m}(\mathbf{X}) = E[\mu_{n+1}(\theta)|\mathbf{X}]$ , i.e., Credibility Premium=Bayesian Premium.

#### Stronger Bühlmann's H1

Change Bühlmann's H1, in addition, to:

**H1**: 
$$f_{X_j}(.|\theta) = f_X(.|\theta)$$
,  $\forall j = 1, ..., n, n+1$ .

$$\begin{split} \mathsf{E}[\mu(\theta)|\mathbf{X}] &= \int \mu(\theta)\pi(\theta|\mathbf{x})d\theta = \int \mu(\theta)\frac{f(\theta,\mathbf{x})}{f(\mathbf{x})}d\theta \\ &= \int \mu(\theta)\frac{f(\mathbf{x}|\theta)\pi(\theta)}{\int f(\mathbf{x}|\theta)\pi(\theta)}d\theta = \frac{\int \mu(\theta)\prod_{j=1}^{n}f(x_{j}|\theta)\pi(\theta)d\theta}{\int_{\Theta}\prod_{j=1}^{n}f(x_{j}|\theta)\pi(\theta)d\theta} \\ &= \frac{\int \mu(\theta)L(\theta)\pi(\theta)d\theta}{\int_{\Theta}L(\theta)\pi(\theta)d\theta}; \\ \pi(\theta|\mathbf{x}) &= \frac{L(\theta)\pi(\theta)}{\int_{\Theta}L(\theta)\pi(\theta)d\theta} \end{split}$$
#### Example (Norberg [1979])

Exact credibility

For a given risk  $X|\theta \frown Bin(1;\theta)$ ,  $\Theta \frown U(\alpha,\beta)$ , obs'd for 10 yrs, 20 risks.  $\bar{X} = 0.0145$ ,  $\mu_{n+1}(\theta) = \mu(\theta) = \theta$ .

$$f(x|\theta) = \theta^{x}(1-\theta)^{1-x}$$
,  $x = 0, 1; 0 < \theta < 1.$ 

$$\pi( heta) = rac{1}{eta - lpha}, \quad 0 < lpha < heta < eta < 1 \quad (eta > lpha)$$

$${}^{*}_{m}(\mathbf{x}) = \mathbf{E}[\theta|\mathbf{x}] = \frac{\sum_{k=1}^{n-n\bar{x}} (-1)^{k} \frac{\beta^{n\bar{x}+k+2} - \alpha^{n\bar{x}+k+2}}{(n-n\bar{x}-k)!k!(n\bar{x}+k+2)}}{\sum_{k=1}^{n-n\bar{x}} (-1)^{k} \frac{\beta^{n\bar{x}+k+1} - \alpha^{n\bar{x}+k+1}}{(n-n\bar{x}-k)!k!(n\bar{x}+k+1)}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Exact credibility

## Example (*Beta-Binomial* model)

Let risk 
$$X|\theta \frown Bin(1;\theta)$$
,  $\Theta \frown Beta(\alpha,\beta)$ ,  $\alpha, \beta > 0$ ,  $\bar{X} = 1.45$ 

$$\begin{aligned} \pi(\theta) &= \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)}; \ \theta \epsilon(0;1); \\ B(\alpha,\beta) &= \int_0^1 x^{\alpha-1}(1-x)^{\beta-1} dx \\ L(\theta) &= \prod_{j=1}^n f(x_j|\theta) = \theta^{\sum_{j=1}^n x_j}(1-\theta)^{n-\sum_{j=1}^n x_j}; \\ \pi(\theta|\mathbf{x}) &= \frac{L(\theta)\pi(\theta)}{\int_0^1 L(\theta)\pi(\theta) d\theta} = \frac{\theta^{\sum_j x_j + \alpha - 1}(1-\theta)^{n+\beta-\sum_j x_j - 1}}{B(\sum_j x_j + \alpha; n + \alpha - \sum_j x_j)}, \\ \pi(\theta|\mathbf{x}) &\equiv Beta(\sum_j x_j + \alpha; n + \beta - \sum_j x_j) \\ E[\theta|\mathbf{x}] &= \frac{\sum_j x_j + \alpha}{\alpha + \beta + n} = \frac{n}{\alpha + \beta + n} \bar{x} + \frac{\alpha + \beta}{\alpha + \beta + n} \mu. \end{aligned}$$

#### Exact credibility

# Example (Gamma-exponential model)

$$\begin{split} X|\theta \sim & \mathsf{Exp}(\,\theta), \mu(\theta) = 1/\theta, \, f(x|\theta) = \theta e^{-\theta x}, x > 0; \\ \Theta \frown \, \textit{Gamma}(\alpha, \beta = 1/\beta^*), \end{split}$$

$$\begin{aligned} \pi(\theta) &= \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{-\beta\theta} \theta^{\alpha-1}; \ \theta > 0; \\ L(\theta) &= \prod_{j=1}^{n} f(x_{j}|\theta) = \theta^{n} \exp\{-\theta \sum x_{j}\}; \\ \pi(\theta|\mathbf{x}) &= \frac{L(\theta)\pi(\theta)}{\int_{0}^{\infty} L(\theta)\pi(\theta)d\theta} \\ &= \frac{(\beta + \sum_{j} x_{j})^{n+\alpha}}{\Gamma(n+\alpha)} \exp\{-\theta(\beta + \sum_{j} x_{j})\}\theta^{n+\alpha-1}, \\ \pi(\theta|\mathbf{x}) &\equiv \operatorname{Gama}(n+\alpha; \beta + \sum_{i} x_{j}); \ \mu = \operatorname{E}[X_{ij}] = \operatorname{E}[1/\theta] \end{aligned}$$

・ロト ・聞ト ・ヨト ・ヨト æ

#### Exact credibility

## Example (Gamma-exponential model cont'd)

$$\mu = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{+\infty} e^{-\beta\theta} \theta^{\alpha-2} d\theta = \beta \frac{\Gamma(\alpha-1)}{\Gamma(\alpha)} = \frac{\beta}{\alpha-1}$$
$$E[1/\theta|\mathbf{x}] = \frac{(\beta + \sum_{j=1}^{n} x_j)^{n+\alpha}}{\Gamma(n+\alpha)} \int_{0}^{+\infty} e^{-(\beta + \sum_j x_j)\theta} \theta^{n+\alpha-2} d\theta$$
$$= \frac{(\beta + \sum_j x_j)\Gamma(n+\alpha-1)}{\Gamma(n+\alpha)} = \frac{\beta + \sum_j x_j}{n+\alpha-1}$$
$$= \frac{n}{n+\alpha-1} \bar{x}_j + \frac{\alpha-1}{n+\alpha-1} \mu$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parameter estimation

Bühlmann's Empirical Bayes.. Unbiased and consistent estimators.

$$\mu = E[X] = E[E[X|\theta]] = E[\mu(\theta)].$$
  
$$\hat{\mu} = \bar{X} = \frac{1}{r} \sum_{i=1}^{r} \bar{X}_i = \frac{1}{nr} \sum_{i=1}^{r} \sum_{j=1}^{n} X_{ij}$$

$$V[X] = V[\mu(\theta)] + E[v(\theta)] = a + v$$

$$V[\bar{X}_i] = a + \frac{1}{n}v$$

$$\hat{v} = \frac{1}{r}\sum_{i=1}^r S_i'^2 = \frac{1}{r}\sum_{i=1}^r \sum_{j=1}^n \frac{(X_{ij} - \bar{X}_i)^2}{n - 1}$$

$$\hat{a} = \max\left\{\frac{1}{r - 1}\sum_{i=1}^r (\bar{X}_i - \bar{X})^2 - \frac{1}{n}\hat{v}; 0\right\}.$$

200

Parameter estimation

## Bühlmann-Straub's Empirical Bayes.

$$\hat{\mu} = \bar{X} = \frac{1}{m} \sum_{i=1}^{r} m_i \bar{X}_i = \frac{1}{m} \sum_{i=1}^{r} \sum_{j=1}^{n_i} m_{ij} X_{ij}$$
$$m = \sum_{i=1}^{r} m_i = \sum_{i=1}^{r} \sum_{j=1}^{n_i} m_{ij}; \qquad \hat{\mu} = \frac{\sum_{i=1}^{r} \hat{Z}_i \bar{X}_i}{\sum_{i=1}^{r} \hat{Z}_i}$$

$$\hat{v} = \frac{\sum_{i=1}^{r} \sum_{j=1}^{n_{i}} m_{ij} (X_{ij} - \bar{X}_{i})^{2}}{\sum_{i=1}^{r} (n_{i} - 1)}$$

$$\hat{a} = \max\left\{ \left( m - m^{-1} \sum_{i=1}^{r} m_{i}^{2} \right)^{-1} \left[ \sum_{i=1}^{r} m_{i} (\bar{X}_{i} - \bar{X})^{2} - \hat{v} (r - 1) \right]; 0 \right\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

#### Problems

#### Example (A Bonus-Malus system)

Let  $X_j$ : claims in year j,  $X_j \frown Poisson(\theta)$ ,  $\mu(\theta) = v(\theta) = \theta$ 

$$\tilde{\theta} = \frac{n}{n + \mathrm{E}[\theta]/\mathrm{V}[\theta]}\bar{X} + \frac{\mathrm{E}[\theta]/\mathrm{V}[\theta]}{n + \mathrm{E}[\theta]/\mathrm{V}[\theta]}\mathrm{E}[\theta]$$

Data: Portfolio of 106974 policies in one year (stable period):

• 
$$\hat{E}[\theta] = \hat{E}[X] = \bar{X} = (1/106974) \sum_{k=0}^{4} x_k n_{x_k} = 0.1011.$$

- $\hat{V}[X] = s^2 = (1/106974) \sum_{k=0}^{4} x_k^2 n_{x_k} \bar{x}^2 = 0.1074.$
- $V[X] = E[\theta] + V[\theta]$ .  $\hat{V}[\theta] = 0.1074 0.1011 = 0.0063$ .

## Example (A Bonus-Malus system cont'd)

 $P_{n+1}^*(\mathbf{X}_i)$ : 100×Risk premium/Collective premium

$$\tilde{\theta} = \frac{n}{n+0.1011/0,0063} \bar{X} + \frac{0.1011/0.0063}{n+0.1011/0.0063} \times 0.1011$$
$$= \left(\sum_{j=1}^{n} x_j + 16,047 (0.1011)\right) / (n+16.0476)$$
$$P_{n+1}^*(\mathbf{X}_i) = 100 \times \frac{\sum_{j=1}^{n} X_{ij} + 1.6224}{0.1011(n+16.0476)} = 100 \times \frac{\sum_{i=1}^{n} X_{ij} + 1.6224}{0.1011(n+1.6224)}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Intro Credibility theory Bonus-malus systems

#### Problems

|                  | No. of claims |        |        |        |        |
|------------------|---------------|--------|--------|--------|--------|
| n <u>o</u> years | 0             | 1      | 2      | 3      | 4      |
| 0                | 100           | -      | -      | -      | -      |
| 1                | 94,13         | 152,16 | 210,18 | 268,20 | 326,22 |
| 2                | 88,92         | 143,72 | 198,53 | 253,34 | 308,14 |
| 3                | 84,25         | 136,18 | 188,11 | 240,04 | 291,97 |
| 4                | 80,05         | 129,39 | 178,73 | 228,06 | 277,40 |
| 5                | 76,24         | 123,24 | 170,23 | 217,23 | 264,22 |
| 6                | 72,79         | 117,65 | 162,51 | 207,38 | 252,24 |
| 7                | 69,63         | 112,54 | 155,46 | 198,38 | 241,29 |
| 8                | 66,73         | 107,86 | 149,00 | 190,13 | 231,26 |
| 9                | 64,07         | 103,56 | 143,05 | 182,54 | 222,03 |
| 10               | 61,61         | 99,58  | 137,56 | 175,53 | 213,50 |

Table: Relative premium for a Bonus-malus system

#### Example (Life group insurance)

 $N_{ksij}$ : No. people dying, with ins. capital  $x_k$ , age s, group j, year i.  $N_{ij} = \sum_{k,s} N_{ksij}$  - ...in group j year i  $x_k$ : insured capital  $q_s$ : mortality rate, age s, known.  $q_s \theta_j$ : mortality, age s, group j (unknown)  $n_{ksij}$ : No. people group j, capital  $x_k$ , age s, year i.  $S_{ij} = \sum_k (x_k \sum_s N_{ksij})$ : aggregate claims, group j, year i

$$N_{ksij}|\theta \quad \frown \quad \text{Poisson}(n_{ksij} \times q_s \times \theta_j) \Rightarrow$$

$$\sum_{s} N_{ksij}|\theta \quad \sim \quad \text{Poisson}\left(\theta_j \sum_{s} q_s n_{ksij}|\theta_j\right)$$

#### Problems

### Example (Life group insurance, cont'd)

$$S_{ij}|\theta = \sum_{k} \left( x_k \sum_{s} N_{ksij} \right)$$
  

$$S_{ij}|\theta \frown \text{CPoisson} \left( \theta_j \sum_{k,s} n_{ksij} q_s; f_{ij}(x) = \frac{\sum_{s} q_s n_{ksij}}{\sum_{k,s} q_s n_{ksij}} \right)$$

$$\begin{split} \mathbf{E}[S_{n+1,j}|\theta_j] &= \sum_k x_k \sum_s \mathbf{E}[N_{ks(n+1)j}|\theta_j] = \theta_j \sum_{k,s} x_k q_s n_{ks(n+1)j} \\ P_c &= \tilde{\theta}_j \sum_{k,s} x_k q_s n_{ks(n+1)j}, \end{split}$$

$$\tilde{\theta}_j = \frac{m_j}{m_j + \mathrm{E}[\theta_j]/\mathrm{V}[\theta_j]} \bar{X}_j + \frac{\mathrm{E}[\theta_j]/\mathrm{V}[\theta_j]}{m_j + \mathrm{E}[\theta_j]/\mathrm{V}[\theta_j]} \mathrm{E}[\theta_j]$$

## Example (Life group insurance, cont'd)

$$\begin{split} \mathbf{E}[S_{n+1,j}|\theta_j] &= \sum_k x_k \sum_s \mathbf{E}[N_{ks(n+1)j}|\theta_j] = \theta_j \sum_{k,s} x_k q_s n_{ks(n+1)j} \\ P_c &= \tilde{\theta}_j \sum_{k,s} x_k q_s n_{ks(n+1)j}, \end{split}$$

$$\tilde{\theta}_{j} = \frac{m_{j}}{m_{j} + \mathrm{E}[\theta_{j}]/\mathrm{V}[\theta_{j}]} \bar{X}_{j} + \frac{\mathrm{E}[\theta_{j}]/\mathrm{V}[\theta_{j}]}{m_{j} + \mathrm{E}[\theta_{j}]/\mathrm{V}[\theta_{j}]} \mathrm{E}[\theta_{j}]$$

$$X_{ij} = N_{ij}/m_{ij}; m_{ij} = \sum_{k,s} q_{s} n_{ksij}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Problems

## Problem 1

Consider a motor insurance portfolio where the population is classified into categories A B and C, respectively, where A is Good drivers, B is Bad drivers and C is Sports drivers. The population of drivers is split as follows: 70% is in category A, 25% in B and 5% in C. For each driver in category A, there is a probability of 0.75 of having no claims in a year, a probability of 0.2 of having one claim and a probability of 0.05 of having two or more claims in a year. For each driver in category B these probabilities are 0.25, 0.4 and 0.35, respectively. For each driver in category C these probabilities are 0.3, 0.4 and 0.3, respectively.

Risk parameter representing the kind of driver is denoted by  $\theta$ , which is a realization of the random variable  $\Theta$ . The insurer does not know the value of that parameter. Let X be the (observable) number of claims per year for a risk taken out at random from the whole portfolio. For a given  $\Theta = \theta$  yearly observations  $X_1, X_2, ...$ , make a random sample from risk X. The insurer finds crucial that the annual premium for a given risk might be adjusted by its claim record.

Consider a risk X taken out at random from the portfolio.

- Calculate the mean and variance of X.
- 2 Compute the probability function of X.

#### Problems

## Problem 1 (cont'd)

For a particular risk of the portfolio we observed in the last two years  $X_1 = x_1 = 0$  and  $X_2 = x_2 = 2$ .

- Sor a given Θ = θ of risk X observations, X<sub>1</sub>, X<sub>2</sub>, ..., are a random sample but X<sub>1</sub> and X<sub>2</sub> are not independent. Comment briefly.
- Compute Cov[X<sub>1</sub>, X<sub>2</sub>]. [Note: For r.v.'s X, Y and Z, Cov[X, Y] = E[Cov[X, Y|Z]] + Cov[E[X|Z]; E[Y|Z]]]
- **5** Compute the posterior probability function of  $\Theta$  given  $(X_1 = 0, X_2 = 2)$ .
- You do not know from which risk category the above sample comes. Carry out appropriate calculations to determine from which category the sample is most likely to have come.

We need to compute a (pure) premium for the next year:

- Ocompute the collective pure premium.
- **3** Compute the Bayes premium  $E[X_3|X = (0,2)] = E(\mu(\Theta)|X = (0,2)).$
- **2** Compute Bühlmann's credibility premium, say,  $\tilde{E}(X_3|\theta)$ .
- Oan we talk here on Exact Credibility? Comment appropriately.

Ratemaking and Experience Rating concepts, Recap...

# Ratemaking portfolios/groups:

• Similar risks grouping in collectives of risks for ratemaking. Tariff:

• Set of premia, for each risk in a (homogeneous) portfolio. A basic premium plus a system of *bonus* or *malus*.

## Tariff structure:

- System of bonus/malus applied to a basic premium.
- "Prior" and "Posterior" ratemaking:
  - First rate following given *prior* variables, then make a *posterior re-evaluation/readjustment*, according to the reported accidents/claims by the risk/policy.

Bonus-malus systems, use of GLM's, ...

 Bonus systems are in general based on claim counts, not amounts. This is explained by the usual assumption of independence between number and severity of claims. The base model is Markovian. 

# Bonus-malus (or bonus) systems

- Common tariff in motor insurance;
- Usually based on a counting variable, not the amounts
- A Markov chain model (discrete time) is often used:
- Basic idea:
  - year(s) with no claim: bonus
  - year with 1 claims: malus; 2 claims: + malus...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Study Long Term behaviour

### Bonus-Malus Systems

- A priori classification variables: age, sex, type and use of car, territory
- A posteriori variables: deductibles, credibility, bonus-malus
- Bonus malus:
  - Answer to heterogeneity of behavior of drivers in each cell

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Answer to adverse selection
- Inducement to drive more carefully
- Strongly influenced by regulatory environment and culture

#### BMS as they should be: Bayesian analysis

## Example (Lemaire (1995, p. 37))

Observed distribution of third-party liability motor insurance claims Mean:  $\bar{x} = 0.1011$ 

Variance:  $s^2 = 0.1074$ 

| Number of claims | Observed policies |
|------------------|-------------------|
| 0                | 96,978            |
| 1                | 9,240             |
| 2                | 704               |
| 3                | 43                |
| 4                | 9                 |
| 5+               | 0                 |
| Total            | 106,974           |
|                  |                   |

## Example (cont'd)

# Non-contagious model: Poisson fit

| Number of claims | Observed policies | Poisson fit |
|------------------|-------------------|-------------|
| 0                | 96,978            | 96,689.6    |
| 1                | 9,240             | 9,773.5     |
| 2                | 704               | 493.9       |
| 3                | 43                | 16.6        |
| 4                | 9                 | 0.4         |
| 5+               | 0                 | 0           |
| Total            | 106,974           | 106,974     |

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへ⊙

### Contagious model: Negative Binomial fit

| Example (cont'd  | )                 |             |                       |
|------------------|-------------------|-------------|-----------------------|
| Number of claims | Observed policies | Poisson fit | Negative Binomial fit |
| 0                | 96,978            | 96,689.6    | 96,985.5              |
| 1                | 9,240             | 9,773.5     | 9,222.5               |
| 2                | 704               | 493.9       | 711.7                 |
| 3                | 43                | 16.6        | 50.7                  |
| 4                | 9                 | 0.4         | 3.6                   |
| 5+               | 0                 | 0           | 0                     |
| Total            | 106,974           | 106,974     | 106,974               |

Example (Lemaire 91995, p. 44; Deaths by horse kicks in the ten corps of the Prussian Army, 1875-1894)

| N                  | Observed | Poisson | Neg Bin |
|--------------------|----------|---------|---------|
| 0                  | 109      | 108.67  | 111.99  |
| 1                  | 65       | 66.29   | 61.80   |
| 2                  | 22       | 20.22   | 20.00   |
| 3                  | 3        | 4.11    | 4.95    |
| 4                  | 1        | 0.72    | 1.04    |
| 5+                 | 0        | 0.00    | 0.22    |
| Total – Chi-Square | 200      | 0.33    | 1.24    |

Shows total randomness of accidents. Clearly, Poisson fit is better.

| Example | (Optima | al BMS v | with Neg | ative Bir | nomial m | odel) |
|---------|---------|----------|----------|-----------|----------|-------|
|         | Year    |          |          | Claims    |          |       |
|         |         | 0        | 1        | 2         | 3        | 4     |
|         | 0       | 100      |          |           |          |       |
|         | 1       | 94       | 153      | 211       | 269      | 329   |
|         | 2       | 89       | 144      | 199       | 255      | 310   |
|         | 3       | 84       | 137      | 189       | 241      | 294   |
|         | 4       | 80       | 130      | 179       | 229      | 279   |
|         | 5       | 76       | 123      | 171       | 218      | 266   |
|         | 6       | 73       | 118      | 163       | 208      | 253   |
|         | 7       | 69       | 113      | 156       | 199      | 242   |

Link with Credibility theory, Credibility idea:

*Premium* = (1 - z)(Population *Pr.*) + z(Individual *Pr.*)

Credibility is an exact rating formula for the Poisson-Gamma mix

## • This optimal BMS is:

- Fair (as it results from the application of Bayes theorem)
- Financially balanced (the average income of the insurer stays at 100, year after year)
- <u>BUT</u>, It is not acceptable to regulators and managers, as the harsh penalties:
  - Encourage uninsured driving
  - Suggest hit-and-run behavior
  - Induce policyholders to leave the company after one accident

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 $\Rightarrow$  In practice, another approach, based on Markov Chains, is used

BMS as they are: definition of Markov Chain (MC)  $\{Z_n\}$  is a discrete-time, non-homogeneous Markov Chain when Z is an infinite sequence of random variables  $Z_0, Z_1, \ldots$  such that:

• Z<sub>n</sub> denotes the state at time n, n = 0, 1, 2, ...

- Each Z<sub>n</sub> is a discrete random variable that can take s values (s is the number of states)
- Il transition probabilities are history-independent:

$$P_{(n)}(i,j) = Pr[z_{n+1}=j|z_n=i, Z_{n-1}=i_{n-1}, ..., M_0=i_0]$$
  
=  $Pr[z_{n+1}=j|Z_n=i]$ 

For all BMS applications, MC are homogeneous:  $P_n = P$ . We can have MC of order higher than 1. See Next example

## Example (Centeno [2003])

A *Bonus* system in motor insurance, 3rd party liability (directly, the system is not pure Markovian, Markov of Order 2)

- 30% discount, no claim for 2 yrs.
- 15% malus, 1 claim
- 30% malus, 2 claims
- 45% malus, 3 claims
- 100% malus, 4 claims
- > 4, case by case...

Markovian, if classes are split (see later)

Classical "Markovian" BMS consider (long term) stable behaviour. See next examples

うして ふゆう ふほう ふほう うらつ

### Example (Markov chain, T&K, p.102, Ex. 2.2)

A particle travels through states  $\{0,1,2\}$  according to a Markov chain

$$P = \begin{array}{ccc} 0 & 1 & 2 \\ 0 & 1/2 & 1/2 \\ 2 & 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{array} \right)$$





### Example

### Let a Markov chain with transition matrix:

|              | 0     | 1   | 2   | 3   | 4   | 5   | 6    |  |
|--------------|-------|-----|-----|-----|-----|-----|------|--|
| 0            | ( 0.9 | 0.1 | 0   | 0   | 0   | 0   | 0 \  |  |
| 1            | 0.9   | 0   | 0.1 | 0   | 0   | 0   | 0    |  |
| 2            | 0.9   | 0   | 0   | 0.1 | 0   | 0   | 0    |  |
| <i>P</i> = 3 | 0.9   | 0   | 0   | 0   | 0.1 | 0   | 0    |  |
| 4            | 0.9   | 0   | 0   | 0   | 0   | 0.1 | 0    |  |
| 5            | 0.9   | 0   | 0   | 0   | 0   | 0   | 0.1  |  |
| 6            | 0.9   | 0   | 0   | 0   | 0   | 0   | 0.1/ |  |

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

| Examp | le |
|-------|----|
|-------|----|

Long term:  $P^8 =$ 

| ſ | 9   | .09 | .00 9 | .000 9 | .0000 9 | $9.0	imes10^{-6}$ | $1.0	imes10^{-6}$ ]  |
|---|-----|-----|-------|--------|---------|-------------------|----------------------|
|   | . 9 | .09 | .00 9 | .000 9 | .0000 9 | $9.0	imes10^{-6}$ | $1.0 	imes 10^{-6}$  |
|   | . 9 | .09 | .00 9 | .000 9 | .0000 9 | $9.0	imes10^{-6}$ | $1.0 	imes 10^{-6}$  |
| İ | . 9 | .09 | .00 9 | .000 9 | .0000 9 | $9.0	imes10^{-6}$ | $1.0 \times 10^{-6}$ |
|   | . 9 | .09 | .00 9 | .000 9 | .0000 9 | $9.0	imes10^{-6}$ | $1.0 \times 10^{-6}$ |
|   | . 9 | .09 | .00 9 | .000 9 | .0000 9 | $9.0	imes10^{-6}$ | $1.0 	imes 10^{-6}$  |
|   | . 9 | .09 | .00 9 | .000 9 | .0000 9 | $9.0	imes10^{-6}$ | $1.0 	imes 10^{-6}$  |

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

### Example (Entry class: 5.)

Table 4.1 Transition miles for

| Starting | Level of | ccupied if | Starting |   | Level or    | cupied if  |    |
|----------|----------|------------|----------|---|-------------|------------|----|
| level    | 0        | $\geq 1$   | level    | 0 | 1           | 2          | 2  |
|          | claim is | reported   |          | c | laim(s) is/ | are report | ed |
| 0        | 0        | 5          | 5        | 4 | 5           | 5          | 5  |
| 1        | 0        | 5          | 4        | 3 | 5           | 5          | 5  |
| 2        | 1        | 5          | 3        | 2 | 5           | 5          | 5  |
| 3        | 2        | 5          | 2        | 1 | 4           | 5          | 5  |
| 4        | 3        | 5          | 1        | 0 | 3           | 5          | 5  |
| 5        | 4        | 5          | 0        | 0 | 2           | 4          | 5  |

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

A posterior ratemaking system, experience rating, is a *Bonus-malus* sytem if

- The rating periods are equal (1 year)
- The risks, policies, are divided into (finite) classes:

$$C_1, C_2, ..., C_s; \quad \cup_i C_i = C; \quad C_i \cap C_j = \emptyset.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- No transitions within the year
- Position in Class in the year *n* depends on:
  - Position in n-1, and
  - The year claim counts.

Composition of the B-S system:

A vector of *premia* (or multiplying factor, index)

$$\mathbf{b} = (b(1), b(2), ..., b(s))$$

Iransition rules among classes, in matrix:

$$\mathbf{T} = [T_{ij}]$$
, each entry  $T_{ij}$  is a set of integers...

**T** : 
$$\cup_{j=1}^{s} T_{ij} = \{0, 1, 2, ...\}, T_{ij} \cap T_{ij'} = \emptyset, j \neq j'$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Solution Entry class,  $C_{i_0}$  is the same for all policies.

#### Transition rules

#### If k claims are reported

$$t_{ij}(k) = \begin{cases} 1, & \text{if policy transfers from } i \text{ to } j \\ 0, & \text{otherwise} \end{cases}$$

The  $t_{ij}(k)$ s are put in matrix form T(k), i.e.

$$\boldsymbol{T}(k) = \begin{pmatrix} t_{00}(k) & t_{01}(k) & \cdots & t_{0s}(k) \\ t_{10}(k) & t_{11}(k) & \cdots & t_{1s}(k) \\ \vdots & \vdots & \ddots & \vdots \\ t_{s0}(k) & t_{s1}(k) & \cdots & t_{ss}(k) \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Transition rules

**Example 4.3** (-1/Top Scale) In this case, we have

$$\boldsymbol{T}(0) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad \boldsymbol{T}(1) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 \_ のへで

and T(k) = T(1) for all  $k \ge 2$ .

#### Transition rules

Т

*Example 4.4* (-1/+2 Scale) In this case, we have

$$T(0) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad T(1) = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix} \text{ for all } k \ge 3$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Intro Credibility theory Bonus-malus systems

#### Markov analysis

- Symbolically, a B-M S can be written as a triplet:  $\Delta = (C_{i_0}, \mathbf{T}, \mathbf{b}).$
- Bonus Class in year *n*:  $Z_{\Delta,n}$ , defined by set of rules **T** and entry class  $C_{i_0}$ .
- The system is supposed to be a Markov chain

$$\{Z_{\Delta,n}, n = 0, 1, 2, ...\}$$

- Transition probability matrix:  $P_T = [p_T(i, j)]$
- Transition rules is based on claim counts, often
  - Poisson distributed (usually bad), or
  - mixed Poisson (much better), i, j = 1, 2, ..., s,

$$p_{T}(i,j) = \Pr(Z_{\Delta,n+1} = j | Z_{\Delta,n} = i)$$

$$p_{T}^{(n)}(i,j) = \Pr(Z_{\Delta,n} = j | Z_{\Delta,0} = i)$$

$$p_{T}^{(n)}(j) = \Pr(Z_{\Delta,n} = j)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで
#### Markov analysis

# Further, $P(\vartheta)$ is the one-step transition matrix, i.e.

$$\boldsymbol{P}(\vartheta) = \begin{pmatrix} p_{00}(\vartheta) & p_{01}(\vartheta) & \cdots & p_{0s}(\vartheta) \\ p_{10}(\vartheta) & p_{11}(\vartheta) & \cdots & p_{1s}(\vartheta) \\ \vdots & \vdots & \ddots & \vdots \\ p_{s0}(\vartheta) & p_{s1}(\vartheta) & \cdots & p_{ss}(\vartheta) \end{pmatrix}$$

$$p_{(i,j)}(\lambda) = \sum_{k=0}^{\infty} p_k(\lambda) t_{ij}(k), \ i, j = 1, ..., S$$

$$\mathsf{P}_{T,\lambda} = \left[ p_{(i,j)}(\lambda) \right]_{S \times S} = \sum_{k=0}^{\infty} p_k(\lambda) \mathsf{T}_k$$

$$= \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} \mathbf{T}_k . \text{ (if Poisson)}$$

----

Intro Credibility theory

#### Bonus-malus systems

.

.

#### Markov analysis

**Example 4.5** (-1/Top Scale) The transition matrix  $P(\vartheta)$  associated with this bonus-malus system is given by

$$\boldsymbol{P}(\vartheta) = \begin{pmatrix} \exp(-\vartheta) & 0 & 0 & 0 & 0 & 1 - \exp(-\vartheta) \\ \exp(-\vartheta) & 0 & 0 & 0 & 0 & 1 - \exp(-\vartheta) \\ 0 & \exp(-\vartheta) & 0 & 0 & 0 & 1 - \exp(-\vartheta) \\ 0 & 0 & \exp(-\vartheta) & 0 & 0 & 1 - \exp(-\vartheta) \\ 0 & 0 & 0 & \exp(-\vartheta) & 0 & 1 - \exp(-\vartheta) \\ 0 & 0 & 0 & 0 & \exp(-\vartheta) & 1 - \exp(-\vartheta) \end{pmatrix}$$

**Example 4.6** (-1/+2 scale) The transition matrix  $P(\vartheta)$  associated with this bonus-malus system is given by

$$P(\vartheta) = \begin{pmatrix} \exp(-\vartheta) & 0 & \vartheta \exp(-\vartheta) & 0 & \frac{\vartheta^2}{2} \exp(-\vartheta) & 1 - \Sigma_1 \\ \exp(-\vartheta) & 0 & 0 & \vartheta \exp(-\vartheta) & 0 & 1 - \Sigma_2 \\ 0 & \exp(-\vartheta) & 0 & 0 & \vartheta \exp(-\vartheta) & 1 - \Sigma_3 \\ 0 & 0 & \exp(-\vartheta) & 0 & 0 & 1 - \exp(-\vartheta) \\ 0 & 0 & 0 & \exp(-\vartheta) & 0 & 1 - \exp(-\vartheta) \\ 0 & 0 & 0 & \exp(-\vartheta) & 1 - \exp(-\vartheta) \end{pmatrix}$$

where  $\Sigma_i$  represents the sum of the elements in columns 1 to 5 in row *i*, *i* = 1, 2, 3, that is,

Long term behaviour

Transition rules is based on claim counts, often

• Poisson distributed (usually bad), i, j = 1, 2, ..., s, n = 0, 1, ...

$$\begin{aligned} p_{T,\lambda}(i,j) &= \Pr\left(Z_{\Delta,n+1} = j | Z_{\Delta,n} = i, \Lambda = \lambda\right) \\ p_{T,\lambda}^{(n)}(i,j) &= \Pr\left(Z_{\Delta,n} = j | Z_{\Delta,0} = i, \Lambda = \lambda\right) \\ p_{T,\lambda}^{(n)}(j) &= \Pr\left(Z_{\Delta,n} = j | \Lambda = \lambda\right) . \end{aligned}$$

• Mixed Poisson (much better), 1st compute the conditional  $p_{T,\lambda}^{(n)}(i,j), i,j = 1, 2, ..., s$ , then

$$p_{T}(i,j) = \int_{0}^{\infty} p_{T,\lambda}(i,j) d\pi(\lambda)$$
  

$$p_{T}^{(n)}(i,j) = \int_{0}^{\infty} p_{T,\lambda}^{(n)}(i,j) d\pi(\lambda) = E\left[p_{T,\lambda}^{(n)}(i,j)\right]$$
  

$$p_{T}^{(n)}(j) = \int_{0}^{\infty} p_{T,\lambda}^{(n)}(j) d\pi(\lambda) = E\left[p_{T,\lambda}^{(n)}(j)\right].$$

**Remark**: neither  $p_T^{(n)}(i,j)$  nor  $p_T^{(n)}(j)$  are obtained from the initial mixed Poisson distribution.

Long term behaviour

- All B-M systems have (at least) a *bonus* class where a policy:
  - stays if keeps with no claims
  - goes, transits to, if has no claims
  - goes out, transits from (to another)
- That class is a periodic state
- If the Markov chain is irreducible, finite number of states, it will be aperiodic and stationary;
- $\bullet\,$  Then, it exists a limit distribution, for a given  $\lambda$

$$p_{\mathcal{T},\lambda}^{(\infty)}(j) = \lim_{n\uparrow\infty} p_{\mathcal{T},\lambda}^{(n)}(i,j).$$

If  $\lambda$  is considered to be the outcome of a r.v. with dist.  $\pi(\lambda),$  usually

$$p_{T}^{(\infty)}(j) = \int_{0}^{\infty} p_{T,\lambda}^{(\infty)}(j) d\pi(\lambda) = E\left[p_{T,\lambda}^{(\infty)}(j)\right]$$

**Remark**:  $p_T^{(\infty)}(j)$  is not got from the initial "mixed Poisson".

### Example 4.7 (-1/Top Scale) Starting from

| <b>P</b> (0.1) =          | 0.904837 | 0        | 0        | 0        | 0        | 0.095163 |
|---------------------------|----------|----------|----------|----------|----------|----------|
|                           | 0.904837 | 0        | 0        | 0        | 0        | 0.095163 |
|                           | 0        | 0.904837 | 0        | 0        | 0        | 0.095163 |
|                           | 0        | 0        | 0.904837 | 0        | 0        | 0.095163 |
|                           | 0        | 0        | 0        | 0.904837 | 0        | 0.095163 |
|                           | 0        | 0        | 0        | 0        | 0.904837 | 0.095163 |
|                           | ,        |          |          |          |          | ,        |
|                           | 0.606531 | 0.063789 | 0.070498 | 0.077913 | 0.086107 | 0.095163 |
|                           | 0.606531 | 0.063789 | 0.070498 | 0.077913 | 0.086107 | 0.095163 |
| $\mathbf{p}_{2}^{5}(0,1)$ | 0.606531 | 0.063789 | 0.070498 | 0.077913 | 0.086107 | 0.095163 |
| $P^{s}(0.1) =$            | 0.606531 | 0.063789 | 0.070498 | 0.077913 | 0.086107 | 0.095163 |
|                           | 0.606531 | 0.063789 | 0.070498 | 0.077913 | 0.086107 | 0.095163 |
|                           | 0.606531 | 0.063789 | 0.070498 | 0.077913 | 0.086107 | 0.095163 |
|                           | <b>`</b> |          |          |          |          |          |

*Example 4.8* (-1/+2 Scale) In this case,

| <b>P</b> (0.1) = | 0.904837   | 0        | 0.090484 | 0        | 0.004524 | 0.000155 |
|------------------|------------|----------|----------|----------|----------|----------|
|                  | 0.904837   | 0        | 0        | 0.090484 | 0        | 0.004679 |
|                  | 0          | 0.904837 | 0        | 0        | 0.090484 | 0.004679 |
|                  | 0          | 0        | 0.904837 | 0        | 0        | 0.095163 |
|                  | 0          | 0        | 0        | 0.904837 | 0        | 0.095163 |
|                  | 0          | 0        | 0        | 0        | 0.904837 | 0.095163 |
|                  |            |          |          |          |          | ,        |
|                  | ( 0.782907 | 0.082338 | 0.090996 | 0.022276 | 0.016387 | 0.005096 |
|                  | 0.782903   | 0.082332 | 0.091006 | 0.022275 | 0.016387 | 0.005097 |
| $P^{20}(0.1) =$  | 0.782902   | 0.082326 | 0.090993 | 0.022295 | 0.016386 | 0.005098 |
|                  | 0.782803   | 0.082424 | 0.090984 | 0.022285 | 0.016406 | 0.005098 |
|                  | 0.782776   | 0.082352 | 0.091082 | 0.022278 | 0.016403 | 0.005108 |
|                  | 0.782774   | 0.082327 | 0.091011 | 0.022376 | 0.016399 | 0.005113 |

which slowly converges to

|              | 0.782901 | 0.082338 | 0.090998 | 0.022278   | 0.016387 | 0.005097 | 1   |
|--------------|----------|----------|----------|------------|----------|----------|-----|
| $\Pi(0.1) =$ | 0.782901 | 0.082338 | 0.090998 | 0.022278   | 0.016387 | 0.005097 |     |
|              | 0.782901 | 0.082338 | 0.090998 | 0.022278   | 0.016387 | 0.005097 |     |
|              | 0.782901 | 0.082338 | 0.090998 | 0.022278   | 0.016387 | 0.005097 | ŀ   |
|              | 0.782901 | 0.082338 | 0.090998 | 0.022278   | 0.016387 | 0.005097 |     |
| l l          | 0.782901 | 0.082338 | 0.090998 | 0.022278 🗆 | 0.016387 | 0.005097 | E . |

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

# Problem 2 (Problem 1 cont'd)

Consider a motor insurance portfolio where the population is classified into categories  $A \ B$  and C, respectively, where A is Good drivers, B is Bad drivers and C is Sports drivers. The population of drivers is split as follows: 70% is in category A, 25% in B and 5% in C. For each driver in category A, there is a probability of 0.75 of having no claims in a year, a probability of 0.2 of having one claim and a probability of 0.05 of having two or more claims in a year. For each driver in category B these probabilities are 0.25, 0.4 and 0.35, respectively. For each driver in category C these probabilities are 0.3, 0.4 and 0.3, respectively.

Risk parameter representing the kind of driver is denoted by  $\theta$ , which is a realization of the random variable  $\Theta$ . The insurer does not know the value of that parameter. Let X be the (observable) number of claims per year for a risk taken out at random from the whole portfolio. For a given  $\Theta = \theta$  yearly observations  $X_1, X_2, ...$ , make a random sample from risk X. The insurer finds crucial that the annual premium for a given risk might be adjusted by its claim record.

Suppose that the insurer uses a Bonus-malus system based on the claims frequency to rate the risks of that portfolio. The system has simply three classes, numbered 1, 2 and 3 and ranked increasingly from low to higher risk.

# Problem 2 (cont'd)

Transition rules are the following: A policy with no claims in one year goes to the previous lower class in the next year unless it is already Class 1, where it stays. In the case of a claim goes to Class 3, if it is already there no change is made. Let  $\alpha(\theta)$  be the probability of not having any claim in one year for a policy in with risk

parameter  $\theta$ . Entry class is Class 2 and premia vector is b = (70, 100, 150).

- Consider a policy with risk parameter  $\theta$ .
  - Write the transition rules matrix and compute the one year transition probability.
  - 2 Comment on the existence of the of the stationary distribution.
  - 3 Calculate the probability of a policy being ranked in Class 1 two years after entering the system.
  - **3** Calculate the probability function of the premium for a type *A* driver after two years os stay in the portfolio. Compute the average premium.
  - After some time the insurer's chief actuary concluded that for ratemaking purposes it didn't make much difference to keep categories B and C apart, and merged them into, say, B\*. For a driver in this new class, compute the probability function of the premium after one year of staying in the system (since his entry).
- Stationary distr. for a given  $\theta$  is given by vector  $(\alpha(\theta)^2; [1 \alpha(\theta)] \alpha(\theta); 1 \alpha(\theta))$ .
  - 6 Compute the probability function of the premium for a policy taken out at random from the portfolio. Calculate the average premium.

### Example (Cont'd, Centeno [2003])

A *Bonus* system in motor insurance, 3rd party liability (directly, the system is not Markovian)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- 30% discount, no claim for 2 yrs.
- 15% malus, 1 claim
- 30% malus, 2 claims
- 45% malus, 3 claims
- 100% malus, 4 claims
- $\bullet$  > 4, case by case...

This is not Markovian, unless... Classes are split.

#### Long term behaviour

## Example (Centeno [2003]. Class splitting:)

- $C_1$  Policies with 30% bonus
- C<sub>2</sub> Policies with neither *bonus* nor *malus* for the 2nd consecutive year
- $C_3$  Policies with neither *bonus* nor *malus* for the 1st yr
- $C_4$  Policies with 15% *penalty* and no claims last yr
- C<sub>5</sub> Policies with 15% penalty and claims last yr
- $C_6$  Policies with 30% *penalty* and no claims last yr
- C7 Policies with 30% penalty and claims last yr
- C<sub>8</sub> Policies with 45% penalty and no claims last yr
- $\mathit{C}_9\,$  Policies with 45% penalty and claims last yr
- $C_{10}$  Policies with 100% *penalty* and no claims last yr
- $C_{11}$  Policies with 100% *penalty* and claims last yr.

Now is Markovian.

Long term behaviour

# Example (Cont'd)

 $\mathbf{b} = (70, 100, 100, 115, 115, 130, 130, 145, 145, 200, 200)$ 



▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … 釣へ(?)

# Example (cont'd)

| Class j | <i>b<sub>j</sub></i> New Class after step, with |    |    |    |    |    |  |  |
|---------|-------------------------------------------------|----|----|----|----|----|--|--|
|         |                                                 | 0  | 1  | 2  | 3  | 4+ |  |  |
| 1       | 70                                              | 1  | 5  | 7  | 9  | 11 |  |  |
| 2       | 100                                             | 1  | 5  | 7  | 9  | 11 |  |  |
| 3       | 100                                             | 2  | 5  | 7  | 9  | 11 |  |  |
| 4       | 115                                             | 1  | 7  | 9  | 11 | 11 |  |  |
| 5       | 115                                             | 4  | 7  | 9  | 11 | 11 |  |  |
| 6       | 130                                             | 1  | 9  | 11 | 11 | 11 |  |  |
| 7       | 130                                             | 6  | 9  | 11 | 11 | 11 |  |  |
| 8       | 145                                             | 1  | 11 | 11 | 11 | 11 |  |  |
| 9       | 145                                             | 8  | 9  | 11 | 11 | 11 |  |  |
| 10      | 200                                             | 1  | 11 | 11 | 11 | 11 |  |  |
| 11      | 200                                             | 10 | 11 | 11 | 11 | 11 |  |  |

#### Long term behaviour

# Example (cont'd)

If claim counts follow a Poisson( $\lambda$ ),  $P_{\Delta,\lambda}$ :

|          | 1              | <b>2</b>       | 3 | 4              | <b>5</b>               | 6              | 7                          | 8              | 9                          | 10             | 11                                               |
|----------|----------------|----------------|---|----------------|------------------------|----------------|----------------------------|----------------|----------------------------|----------------|--------------------------------------------------|
| 1        | $e^{-\lambda}$ |                |   |                | $\lambda e^{-\lambda}$ |                | $\lambda^2 e^{-\lambda}/2$ |                | $\lambda^3 e^{-\lambda}/6$ |                | $1 - e^{-\lambda} \sum_{i=0}^{3} \lambda^{i}/i!$ |
| <b>2</b> | $e^{-\lambda}$ |                |   |                | $\lambda e^{-\lambda}$ |                | $\lambda^2 e^{-\lambda}/2$ |                | $\lambda^3 e^{-\lambda}/6$ |                | $1 - e^{-\lambda} \sum_{i=0}^{3} \lambda^{i}/i!$ |
| 3        |                | $e^{-\lambda}$ |   |                | $\lambda e^{-\lambda}$ |                | $\lambda^2 e^{-\lambda}/2$ |                | $\lambda^3 e^{-\lambda}/6$ |                | $1 - e^{-\lambda} \sum_{i=0}^{3} \lambda^i / i!$ |
| 4        | $e^{-\lambda}$ |                |   |                |                        |                | $\lambda e^{-\lambda}$     |                | $\lambda^2 e^{-\lambda}/2$ |                | $1 - e^{-\lambda} \sum_{i=0}^{2} \lambda^{i}/i!$ |
| <b>5</b> |                |                |   | $e^{-\lambda}$ |                        |                | $\lambda e^{-\lambda}$     |                | $\lambda^2 e^{-\lambda}/2$ |                | $1 - e^{-\lambda} \sum_{i=0}^{2} \lambda^{i}/i!$ |
| 6        | $e^{-\lambda}$ |                |   |                |                        |                |                            |                | $\lambda e^{-\lambda}$     |                | $1 - e^{-\lambda} \sum_{i=0}^{1} \lambda^{i}/i!$ |
| <b>7</b> | - 0 -          |                |   |                |                        | $e^{-\lambda}$ |                            |                | $\lambda e^{-\lambda}$     |                | $1 - e^{-\lambda} \sum_{i=0}^{1} \lambda^{i}/i!$ |
| 8        | $e^{-\lambda}$ |                |   |                |                        |                |                            |                |                            |                | $1 - e^{-\lambda}$                               |
| 9        |                |                |   |                |                        |                |                            | $e^{-\lambda}$ |                            |                | $1 - e^{-\lambda}$                               |
| 10       | $e^{-\lambda}$ |                |   |                |                        |                |                            |                |                            |                | $1 - e^{-\lambda}$                               |
| 11       |                |                |   |                |                        |                |                            |                |                            | $e^{-\lambda}$ | $1 - e^{-\lambda}$                               |

- The Markov chain is not irreducible.
- You cannot go to Class/State 3.
- Class of states  $\{C_2, C_3\}$  is transient.
- Class, { C<sub>1</sub>, C<sub>4</sub>, C<sub>5</sub>, C<sub>6</sub>, C<sub>7</sub>, C<sub>8</sub>, C<sub>9</sub>, C<sub>10</sub>, C<sub>11</sub> } is a class of positive recurrent aperiodic states.

Long term behaviour

Re-order states in two classes of states:

- Class 1: {*C*<sub>2</sub>, *C*<sub>3</sub>}
- Class 2:  $\{C_1, C_4, C_5, C_6, C_7, C_{8}, C_9, C_{10}, C_{11}\}$

So that  $\mathbf{P}_{\Delta,\lambda}$  is split into 4 blocks:

$$\mathsf{P}_{\Delta,\lambda} = \left[ egin{array}{ccc} \mathsf{P}_{1,(\Delta,\lambda)} & \mathsf{P}_{3,(\Delta,\lambda)} \ \mathsf{0} & \mathsf{P}_{2,\Delta,\lambda} \end{array} 
ight]$$

- $P_{1,\Delta,\lambda}$ : Transition Prob'ty block inside Class 1,  $\{C_2, C_3\}$ ;
- $P_{3,\Delta,\lambda}$ : Transition Prob'ty block between Class of states 1 & 2,

 $\{C_2, C_3\}$  and  $\{C_1, C_4, C_5, C_6, C_7, C_8, C_9, C_{10}, C_{11}\}$ 

•  $P_{2,\Delta,\lambda}$ : Transition Prob'ty block among states { $C_1, C_4, C_5, C_6, C_7, C_8, C_9, C_{10}, C_{11}$ }.

Long term behaviour

We have

$$\begin{split} \mathbf{P}_{\Delta,\lambda}^{2} &= \begin{bmatrix} \mathbf{P}_{1,\Delta,\lambda}^{2} & \mid \mathbf{P}_{1,(\Delta,\lambda)}\mathbf{P}_{3,(\Delta,\lambda)} + \mathbf{P}_{3,(\Delta,\lambda)}\mathbf{P}_{2,(\Delta,\lambda)} \\ \frac{-}{0} & \mid \mathbf{P}_{2,(\Delta,\lambda)}^{2} \\ \mathbf{P}_{2,(\Delta,\lambda)}^{2} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{0} & \mid \mathbf{P}_{1,(\Delta,\lambda)}\mathbf{P}_{3,(\Delta,\lambda)} + \mathbf{P}_{3,(\Delta,\lambda)}\mathbf{P}_{2,(\Delta,\lambda)} \\ \frac{-}{0} & \mid \mathbf{P}_{2,(\Delta,\lambda)}^{2} \\ \mathbf{P}_{2,(\Delta,\lambda)}^{2} \end{bmatrix} \\ & \text{with } \mathbf{P}_{1,\Delta,\lambda}^{2} &= \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{a} & \mathbf{0} \end{bmatrix}^{2} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}. \end{split}$$

# Result

Recursively,  $n \ge 2$ ,

$$\mathsf{P}^{n}_{\Delta,\lambda} = \left[ \begin{array}{cc} \mathbf{0} & \left(\mathsf{P}_{1,(\Delta,\lambda)}\mathsf{P}_{3,(\Delta,\lambda)} + \mathsf{P}_{3,(\Delta,\lambda)}\mathsf{P}_{2,(\Delta,\lambda)}\right)\mathsf{P}^{n-2}_{2,(\Delta,\lambda)} \\ \mathbf{0} & \mathsf{P}^{n}_{2,(\Delta,\lambda)} \end{array} \right]$$

Long term behaviour

Calculate the limit  $\lim_{n\to\infty} \mathsf{P}^n_{\Delta,\lambda} = \mathsf{P}^{\infty}_{\Delta,\lambda}$ 

$$\mathbf{P}_{\Delta,\lambda}^{\infty} = \begin{bmatrix} \mathbf{0} & \left(\mathbf{P}_{1,(\Delta,\lambda)}\mathbf{P}_{3,(\Delta,\lambda)} + \mathbf{P}_{3,(\Delta,\lambda)}\mathbf{P}_{2,(\Delta,\lambda)}\right)\mathbf{P}_{2,(\Delta,\lambda)}^{\infty} \\ \mathbf{0} & \mathbf{P}_{2,(\Delta,\lambda)}^{\infty} \end{bmatrix}$$

with

$$\begin{array}{lll} \mathsf{P}_{2,(\Delta,\lambda)}^{\infty} &=& \lim_{n \to \infty} \mathsf{P}_{2,(\Delta,\lambda)}^{n-2} \quad \text{and} \\ \mathsf{P}_{2,(\Delta,\lambda)}^{\infty} &=& \mathsf{P}_{2,(\Delta,\lambda)}^{\infty} \mathsf{P}_{2,(\Delta,\lambda)} \Leftrightarrow \mathbf{0} = \mathsf{P}_{2}^{\infty} \left( \mathsf{I} - \mathsf{P}_{2} \right) \end{array}$$

 $\mathbf{P}_{\Delta,\lambda}^{n}$  tends for a matrix with all lines equal, of the form  $\mathbf{P}_{\Delta,\lambda}^{n} \rightarrow \left[\mathbf{0} \mid \mathbf{P}_{2,(\Delta,\lambda)}^{\infty}\right]$ 

# Long term behaviour Example

| npi | e (con                           | τα)                                                                                                                                                                         |                |                        |                |                                                                                                         |                |                                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                       |  |
|-----|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|----------------|---------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | $\mathbf{P}_{2,\Delta,\lambda}=$ | $\begin{bmatrix} e^{-\lambda} \\ e^{-\lambda} \end{bmatrix}$ $\begin{bmatrix} e^{-\lambda} \\ 0 \\ e^{-\lambda} \end{bmatrix}$ $\begin{bmatrix} e^{-\lambda} \end{bmatrix}$ | $e^{-\lambda}$ | $\lambda e^{-\lambda}$ | $e^{-\lambda}$ | $\begin{array}{c} \lambda^2 e^{-\lambda}/2 \\ \lambda e^{-\lambda} \\ \lambda e^{-\lambda} \end{array}$ | $e^{-\lambda}$ | $\begin{array}{c} \lambda^3 e^{-\lambda}/6\\ \lambda^2 e^{-\lambda}/2\\ \lambda^2 e^{-\lambda}/2\\ \lambda e^{-\lambda}\\ \lambda e^{-\lambda} \end{array}$ | $e^{-\lambda}$ | $\begin{array}{l} 1-e^{-\lambda}\sum_{i=0}^{3}\lambda^{i}/i!\\ 1-e^{-\lambda}\sum_{i=0}^{2}\lambda^{i}/i!\\ 1-e^{-\lambda}\sum_{i=0}^{2}\lambda^{i}/i!\\ 1-e^{-\lambda}\sum_{i=0}^{1}\lambda^{i}/i!\\ 1-e^{-\lambda}\sum_{i=0}^{1}\lambda^{i}/i!\\ 1-e^{-\lambda}\\ 1-e^{-\lambda}\\ 1-e^{-\lambda}\\ 1-e^{-\lambda}\\ 1-e^{-\lambda}\\ 1-e^{-\lambda}\\ \end{array}$ |  |
|     | $\lambda = 0.1$                  |                                                                                                                                                                             |                |                        |                |                                                                                                         |                |                                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                       |  |

With  $\lambda=$  0.1, we get  $\mathsf{P}^{\infty}_{2,(\Delta,\lambda)}$  as

. .

 $\left( \begin{array}{ccccc} 0.81873 & 0.067032 & 0.074082 & 0.014905 & 0.016473 & 0.0032584 \\ & 0.0036011 & 91126 \times 10^{-4} & 10071 \times 10^{-3} \end{array} \right)$ 

In stationarity, Average Premium is 78.997% of entry Premium.

#### **Evaluation** measures

• Lemaire's (1995):

• Relative Stationary Average Level (RSAL):

$$RSAL = \frac{SAP - mP}{MP - mP}$$
$$SAP = \sum_{j=1}^{s} b(j) p_{T}^{(\infty)}(j)$$

SAP: Stationary Average Premium, mP: minimum Premium, MP: Max Premium

• Premium variation coefficient (VC):

$$VC = SDP/SAP$$
  
$$SDP = \sqrt{\sum_{j=1}^{s} b(j)^2 p_T^{(\infty)}(j) - SAP^2}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Evaluation measures

• Loimaranta's (1972) Efficiency. Elasticity of the average premium (Response to changes in frequency mean)

$$\eta(\lambda) = \frac{\frac{d \, SAP(\lambda)}{SAP}}{\frac{d\lambda}{\lambda}} = \frac{d \ln SAP(\lambda)}{d \ln \lambda}$$

lf

$$\begin{array}{ll} \lambda & \to & \infty \Rightarrow {\it SAP}(\lambda) \to \max \left\{ b(j) \right\} < \infty; \\ \lambda & \to & \infty \Rightarrow \eta(\lambda) \to 0; \quad \lambda \to 0 \Rightarrow \eta(\lambda) \to 0. \end{array}$$

• Lemaire's (1985) Transient Elasticity (1st step analysis)

$$V_{\lambda}(j) = b(j) + \beta_j \sum_{k=1}^{s} p_{T,\lambda}(j,k) V_{\lambda}(k), \ j = 1, ..., s$$

V<sub>λ</sub>(j): Expected present value to be paid by policy from C<sub>j</sub>;
β<sub>j</sub> (< 1): Discount rate.</li>

Evaluation measures

• Lemaire's (1985) Transient Elasticity (1st step analysis)

$$V_{\lambda}(j) = b(j) + \beta_j \sum_{k=1}^{s} p_{T,\lambda}(j,k) V_{\lambda}(k), \ j = 1, ..., s$$

V<sub>λ</sub>(j): Expected present value to be paid by policy from C<sub>j</sub>;
β<sub>j</sub> (< 1): Discount rate.</li>

The system has a unique solution and elasticity comes:

$$\mu_{\lambda}(j) = \frac{dV_{\lambda}(j) / V_{\lambda}(j)}{d\lambda / \lambda}$$
$$\mu(j) = \int_{0}^{\infty} \mu_{\lambda}(j) d\pi(\lambda)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

**Evaluation** measures

# "Bonus hunger"

- Due to "Claims Frequency System"
- (Some?) Small accidents aren't reported;
  - It changes: the reported frequency and amonts dist's;
  - Decreases insurer's management costs;
  - "No-report" decision depends:
    - solely on insured, and
    - his bonus class C<sub>j</sub>;
- Let x<sub>j</sub>: Retention level (works like a "Franchise" not a "Deductible");
- It's possible to find an optimal retention point: x<sub>j</sub><sup>\*</sup> (under some assumptions).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

#### Evaluation measures

### Hypothesis

- (Unreal) Insured knows single amount distr.  $F_X(\cdot)$ , and  $x_j$ ;
- N ¬ Poisson(λ); Single amount X<sub>i</sub> ¬ F<sub>X</sub>(·); Let N\*: no. of accidents reported in C<sub>i</sub>:

$$N^* = \sum_{i=0}^{N} Y_i, \quad Y_0 \equiv 0$$
  
$$Y_i \frown binomial(1; p); \qquad p = \Pr[X_i > x_j] = \bar{F}_X(x_j).$$

Then

$$N^* \frown CPoisson(\lambda, F_y) \equiv Poisson(\lambda \overline{F}_X(x_j))$$

• Let D: Cost of unreported claim, with mean  $E[D(x_i)]$ :

$$D(x_j) = X \mathbb{1}_{\{X \le x_j\}}$$

#### **Evaluation** measures

٩

### -lypothesis (cont'd

$$E[D(x_j)] = 0 \times \lambda \bar{F}_X(x_j) + \lambda F_X(x_j)$$

• and payments are made in mid-year:

$$V_{\lambda,\mathbf{x}}(j) = b(j) + \beta^{1/2} E[D(x_j)] + \beta \sum_{k=1}^{s} p_{T,\lambda,x_j}(j,k) V_{\lambda,\mathbf{x}}(k)$$
  
 $j = 1, ..., s;$ 

Matrix form equation:

$$\begin{aligned} \mathbf{V}_{\lambda,\mathbf{x}} &= \mathbf{b}(\mathbf{x}) + \beta \mathbf{P}_{\mathcal{T},\lambda,\mathbf{x}}(j,k) \mathbf{V}_{\lambda,\mathbf{x}} \\ \mathbf{V}_{\lambda,\mathbf{x}} &= (\mathbf{I} - \beta \mathbf{P}_{\mathcal{T},\lambda,\mathbf{x}})^{-1} \mathbf{b}(\mathbf{x}) \\ \mathbf{b}(\mathbf{x})' &= (\dots, b(j) + \beta^{1/2} E[D(x_j)], \dots). \end{aligned}$$

Under those conditions it's possible to find optimums  $x_j^*$ , see Centeno (2003, pp 181-184), and for algorithms,

Evaluation measures & Optimal scales

 Norberg's (1976) model. Once fixed Rules of a BMS, Efficiency Measure of premium b<sub>n</sub>(Z<sub>Δ,n</sub>), as estimator of risk premium E (S<sub>n</sub>|λ)

$$\begin{split} Q_n(\Delta) &= E\left[\left(E\left(S_n|\lambda\right) - b_n(Z_{\Delta,n})\right)^2\right] \\ &= \int_0^\infty \sum_{j=1}^s \left(E\left(S_n|\lambda\right) - b_n(j)\right)^2 p_{\Delta,\lambda}^{(n)}(j) d\Pi(\lambda) \\ \text{Bonus class in } n &: Z_{\Delta,n}, \quad n = 0, 1, 2, \dots \\ S_n &: \text{Aggregate claims of policy in } n \\ E\left(S_n|\lambda\right) &: \text{Risk premium, unknown.} \end{split}$$

$$Q_{n}(\Delta) = E\left[E\left[\left(E\left(S_{n}|\lambda\right) - b_{n}(Z_{\Delta,n})\right)^{2}\right]|Z_{\Delta,n}\right] \text{ (Like in credibility)}\right]$$

$$= E\left[V\left[E\left(S_{n}|\lambda\right)|Z_{\Delta,n}\right]\right]$$

$$+ E\left[\left(E\left[b_{n}(Z_{\Delta,n}) - E\left(E\left(S_{n}|\lambda\right)\right]|Z_{\Delta,n}\right)\right)^{2}\right]$$

Evaluation measures & Optimal scales

• Norberg's (1976) model (cont'd). Optimal Scale Efficiency Measure

$$Q_n(\Delta) = E\left[\left(E\left(S_n|\lambda\right) - b_n(Z_{\Delta,n})\right)^2\right]$$

### Theorem

$$Q_n(\Delta) \geq E[V[E(S_n|\lambda)|Z_{\Delta,n}]].$$

$$Q_{n}(\Delta) = E \left[ V \left[ E \left( S_{n} | \lambda \right) | Z_{\Delta,n} \right] \right]$$
  

$$iff \quad \Pr \left[ b_{n}(Z_{\Delta,n}) = \mu_{n}(Z_{\Delta,n}) \right] = 1$$
  

$$\mu_{n}(Z_{\Delta,n}) = E \left[ E \left( S_{n} | \lambda \right) | Z_{\Delta,n} \right], \text{ credibility pr. for yr n}$$

• Note:  $E\left[\mu_n(Z_{\Delta,n})\right] = E\left[E\left(S_n|\lambda\right)\right] = E\left(S_n\right)$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Evaluation measures & Optimal scales

Optimal scale for limiting situation:  $Q_0(\Delta) = \lim Q_n(\Delta)$ , as  $n \to \infty$ 

$$Q_{0}(\Delta) = E\left[\left(E\left(S|\lambda\right) - b(Z_{T})\right)^{2}\right], S \stackrel{d}{=} S_{n}$$

(1)

$$b_{\mathbf{T}}(j) = E\left[E\left(S|\lambda\right)|Z_{\mathbf{T}}=j\right] = \frac{\int_{0}^{\infty} E\left(S|\lambda\right)\rho_{T,\lambda}(j)d\Pi(\lambda)}{\rho_{T}^{(\infty)}(j)}$$

If  $S_n$  depends only of  $\lambda$  and use  $E(X_i)$  as monetary unit

$$b_{\mathsf{T}}(j) = \frac{\int_0^\infty \lambda p_{\mathcal{T},\lambda}^{(\infty)}(j) d\Pi(\lambda)}{p_{\mathcal{T}}^{(\infty)}(j)}$$

Efficiency Measure

$$e(T) = E\left[b_{\mathsf{T}}(Z_{\mathsf{T}})^{2}\right] = \sum_{j=1}^{s} b_{\mathsf{T}}(j)^{2} p_{\mathsf{T}}^{(\infty)}(j)$$
$$T \succ \tilde{T} \quad \text{iff} \quad e(T) > e(\tilde{T})$$

Evaluation measures & Optimal scales

- Borgan, Hoem & Norberg (1981)' scale. Non asymptotic criterion and generalization of Norberg's (1976);
- Linear scales by Gilde & Sundt (1989): Linear Norberg (1976) and Linear Borgan et al. (1981);
- Geometric scales by Andrade & Centeno (2005): Geometric Norberg (1976) and Geometric Borgan et al. (1981);
- Ruin Probability criterion (Closed and Open systems): Afonso, Cardoso, Egidio & Guerreiro (2017, 2019)

ション ふゆ アメリア ショー シック

Evaluation measures & Optimal scales

Borgan et al. (1981) scale: Introduces a system with weights,  $w_n$ :

$$\min Q(\Delta) = \sum_{n=0}^{\infty} w_n Q_n(\Delta)$$
$$Q_0(\Delta) = Q_{\infty}(\Delta)$$
$$p_{\Delta,\lambda}^{(0)}(j) = p_{T,\lambda}^{(\infty)}(j)$$

## Solution

$$b_B(j) = \frac{\sum_{n=0}^{\infty} w_n E\left[E[S_n|\Lambda]p_{T,\Lambda}^{(n)}(j)\right]}{p_T(j)}$$
$$p_T(j) = \sum_{n=0}^{\infty} w_n E\left[p_{T,\Lambda}^{(n)}(j)\right]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Evaluation measures & Optimal scales

## Linear Borgan et al.

To turn scales more regular, Impose constraints

$$b(j) = a + j b$$
,  $j = 1, ..., s$ 

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- Statistical modelling
  - Model the pure premium
  - Model the Conditional Expected Value:

$$E(Y|x_1, x_2, ..., x_p) = h(x_1, x_2, ..., x_p, \beta_1, \beta_2, ..., \beta_p)$$
  

$$Y = h(x_1, x_2, ..., x_p, \beta_1, \beta_2, ..., \beta_p) + \varepsilon$$

Y: endogenous variable, x<sub>i</sub>: factor, exogenous, β<sub>j</sub>: parameter
Identify risk factors;

- Different sorts of variables: Nominal (binary: gender, good/bad risk), ordinal/Categorical (ranks: age, power groups), discrete (age, experience yrs, claim counts...), continuous (income, claim amounts)
- Data, Information must be (always) reliable, as simple as possible, clean, neat...
- Y: Pure premium, Factors: risk factors influencing:
  - E.g motor insurance: kms, traffic, driver's ability, power, vehicle type, driver's experience, geographical factors...

(ロ) (型) (E) (E) (E) (O)

Deal with the experts about the factors influencing, gather information, data, manageable data. E.g., in motor insurance we can consider

- Past accident record
- kms driven
- Car owner (company/private)
- Use (business or private)
- Vehicle value
- Power (cm<sup>3</sup>)
- Weight
- Driver's age
- Driving region (usual, city/countryside...)
- Multiple driver's?
- Vehicle age
- Years fo driver's expereince
- Car brand and/or model

- Gender
- Sort of insurance (third party, own damages)
- Driver's profession
- etc,...
- ....

Then, we have to make choices, run/test models ...

- Built classes of factors. Often Class aggregation is needed
- Often we have many binary or rank variables, qualitative data or

If dependent variable Y is:

- Binary: Model a *Logit* or *Probit*
- Countig data: *Poisson* model. Ex: Number of claims in a Bonus system
- Continuous data: Gamma model. Ex: Amount of claims
- Compound Poisson data: Ex: *Poisson-Gamma Tweedie* model for Aggregate claims data.

(*Tweedie* dist.family: Var  $(Y) = a[E(Y)]^p$ , a, p > o const.)

Let S be the Aggregate claims in one year, N be the annual number of claims and X be the amount of each claim.

E(S) = E(N)E(X), is the pure premium.

We can consider modeling the two expectations separately. <u>Or not</u>... Jørgensen & de Souza (1994). Explanatory variables may affect the expected cost by simultaneously increasing or decreasing both the claim frequency and the average claim size.

In practice, some explanatory factors will have a greater impact on the frequency of claims than on their size, or the opposite.

It is also possible for certain factors, e.g. no-claims bonus, to affect the frequency of claims and the claim size in opposite directions.

In a portfolio we can consider different level factors influencing each (conditional) expectation, building a tariff, such that:

$$E(Y|x_1, x_2, ..., x_p) = h(x_1, x_2, ..., x_p, \beta_1, \beta_2, ..., \beta_p)$$

Specifying  $h(x_1, x_2, ..., x_p, \beta_1, \beta_2, ..., \beta_p)$  may not be an easy task, where the  $x_1, x_2, ..., x_p$  are the factors.

A tariff analysis is based on insurer's own data. Steps:

- Postulate a distribution of Y according to its nature, as well as the factors (x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>p</sub>);
- Based on a sample for Y and  $(x_1, x_2, ..., x_p)$  choose the *best* h(.) and estimate  $(\beta_1, \beta_2, ..., \beta_p)$ ;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Hypothesis testing, for Y and  $(x_1, x_2, ..., x_p)$ .

We should consider:

- Existing information in the company;
- Used variables in other, previous, studies;
- Market used variables;
- Legal limitations.

## Data:

- Must be reliable, objective;
- Number of variables must be adequate, no too long or too short;
- All information must cover an homogeneous period. Not too long periods, e.g.

Models:

- Additive models. ANOVA;
- Mutliplicative models, GLM, e.g. two rating factors:

$$\mu_{ij} = \gamma_0 \gamma_{1i} \gamma_{2j}$$

Key ratio

$$Y_{ij} = X_{ij} / w_{ij}$$

• Mean of key ratio:

$$\mu_{ij} = E(Y_{ij})$$
, with  $w_{ij} = 1$
• Mutliplicative models, extension to *many* rating factors, *M*:

 $\begin{array}{lll} \mu_{1i_{1},i_{2},\ldots,i_{M}} &=& \gamma_{0}\gamma_{1i_{1}}\gamma_{2i_{2}}\times\ldots\times\gamma_{Mi_{M}}\\ \mu_{1i_{1},i_{2},\ldots,i_{M}}: & \mbox{Mean of dependent var. with } M \mbox{ rating factors}\\ M: & \mbox{Number of rating factors}\\ \gamma_{ij}: & \mbox{Rating factor } i \mbox{ in Class } j \end{array}$ 

• Exponential dispersion models (EDM's) of GLM's generalise the normal distribution used in the linear models.

Pure Premium = Claim frequency  $\times$  Claim severity

For each of the two factors, we can have different rating factors, separately, since severity and frequency are independent.

| Rating factor   | Class | Class description                         |
|-----------------|-------|-------------------------------------------|
| Vehicle class   | 1     | Weight over 60 kg and more than two gears |
|                 | 2     | Other                                     |
| Vehicle age     | I     | At most 1 year                            |
|                 | 2     | 2 years or more                           |
| Geographic zone | 1     | Central and semi-central parts of         |
|                 |       | Sweden's three largest cities             |
|                 | 2     | Suburbs and middle-sized towns            |
|                 | 3     | Lesser towns, except those in 5 or 7      |
|                 | 4     | Small towns and countryside, except 5–7   |
|                 | 5     | Northern towns                            |
|                 | 6     | * Northern countryside                    |
|                 | 7     | Gotland (Sweden's largest island)         |

## Table 1.1 Rating factors in moped insurance

| Tariff cell |     | Duration | No.     | Claim  | Claim     | Pure     | Actual  |         |
|-------------|-----|----------|---------|--------|-----------|----------|---------|---------|
| Class       | Age | Zone     |         | claims | frequency | severity | premium | premium |
| 1           | 1   | 1        | 62.9    | 17     | 270       | 18256    | 4936    | 2049    |
| 1           | 1   | 2        | 112.9   | 7      | 62        | 13632    | 845     | 1 2 3 0 |
| 1           | 1   | 3        | 133.1   | 9      | 68        | 20877    | 1411    | 762     |
| 1           | 1   | 4        | 376.6   | 7      | 19        | 13045    | 242     | 396     |
| 1           | 1   | 5        | 9.4     | 0      | 0         |          | 0       | 990     |
| I           | 1   | 6        | 70.8    | 1      | 14        | 15000    | 212     | 594     |
| 1           | 1   | 7        | 4.4     | 1      | 228       | 8018     | 1829    | 396     |
| 2           | 2   | 1        | 352.1   | 52     | 148       | 8232     | 1216    | 1 2 2 9 |
| I           | 2   | 2        | 840.1   | 69     | 82        | 7418     | 609     | 738     |
| 1           | 2   | 3        | 1378.3  | 75     | 54        | 7318     | 398     | 457     |
| 1           | 2   | 4        | 5 505.3 | 136    | 25        | 6922     | 171     | 238     |
| 1           | 2   | 5        | 114.1   | 2      | 18        | 11131    | 195     | 594     |
| 1           | 2   | 6        | 810.9   | 14     | 17        | 5970     | 103     | 356     |
| 1           | 2   | 7        | 62.3    | 1      | 16        | 6500     | 104     | 238     |
| 2           | 1   | ¥        | 191.6   | 43     | 224       | 7754     | 1740    | 1024    |
| 2           | 1   | 2        | 237.3   | 34     | 143       | 6933     | 993     | 615     |
| 2           | 3   | .3       | 162.4   | 11     | 68        | 4402     | 298     | 381     |
| 2           | 1   | 4        | 446.5   | 8      | 18        | 8214     | 147     | 198     |
| 2           | 1   | 5        | 13.2    | 0      | 0         |          | 0       | 495     |
| 2           | 1   | 6        | 82.8    | 3      | 36        | 5830     | 211     | 297     |
| 2           | 1   | 7        | 14.5    | 0      | 0         |          | 0       | 198     |
| 2           | 2   | 1        | 844.8   | 94     | 111       | 4728     | 526     | 614     |
| 2           | 2   | 2        | 1 296.0 | 99     | 76        | 4252     | 325     | 369     |
| 2           | 2   | 3        | 1214.9  | 37     | 30        | 4212     | 128     | 229     |
| 2           | 2   | 4        | 3 740.7 | 56     | 15        | 3846     | 58      | 119     |
| 2           | 2   | 5        | 109.4   | 4      | 37        | 3925     | 144     | 297     |
| 2           | 2   | 6        | 404.7   | 5      | 12        | 5280     | 65      | 178     |
| 2           | 2   | 7        | 66.3    | 1      | 15        | 7 7 9 5  | 118     | 119     |

Table 1.2 Key ratios in moped insurance (claim frequency per mille)

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

| Table 1.3 | Important key | ratios |
|-----------|---------------|--------|
|-----------|---------------|--------|

| Exposure w       | Response X             | Key ratio $Y = X/w$        |
|------------------|------------------------|----------------------------|
| Duration         | Number of claims       | Claim frequency            |
| Duration         | Claim cost             | Pure premium               |
| Number of claims | Claim cost             | (Average) Claim severity   |
| Earned premium   | Claim cost             | Loss ratio                 |
| Number of claims | Number of large claims | Proportion of large claims |

## EDM's of GLM's

- Data, Key Ratios Obs org'zed in list form  $(y_1, ..., y_n)'$ ;
- Row *i* contains y<sub>i</sub>, exposure weight w<sub>i</sub> and rating factors ob's;

| Tariff | Covaria     | ites          | beau organization | Duration   | Claim     |
|--------|-------------|---------------|-------------------|------------|-----------|
| cell   | Class       | Age           | Zone              | (exposure) | frequency |
| i      | <i>xi</i> 1 | xi2           | xi3               | wi         | yi .      |
| 1      | 1           | 1             | 1                 | 62.9       | 270       |
| 2      | 1           | 1             | 2                 | 112.9      | 62        |
| 3      | 1           | 1             | 3                 | 133.1      | 68        |
| 4      | 1           | 1             | 4                 | 376.6      | 19        |
| 5      | 1           | 1             | 5                 | 9.4        | 0         |
| 6      | 1           | 1             | 6                 | 70.8       | 14        |
| 7      | 1           | 1             | 7                 | 4.4        | 228       |
| 8      | 1           | 2             | 1                 | 352.1      | 148       |
| 9      | 1           | 2             | 2                 | 840.1      | 82        |
| ÷      | :           | in the second | :                 |            |           |
| 21     | 2           | 1             | 7                 | 14.5       | 0         |
| 22     | 2           | 2             | 1                 | 844.8      | 111       |
| 23     | 2           | 2             | 2                 | 1 296.0    | 76        |
| 24     | 2           | 2             | 3                 | 1214.9     | 30        |
| 25     | 2           | 2             | 4                 | 3740.7     | 15        |
| 2.6    | 2           | 2             | 5                 | 109.4      | 37        |
| 2.7    | 2           | 2             | 6                 | 404.7      | 12        |
| 28     | 2           | 2             | 7                 | 66.3       | 15        |

Prob'y dist of the Claim Frequency: Poisson, mixed Poisson.
Let X<sub>i</sub> in cell i with w<sub>i</sub>,

$$X_i \frown Poisson(w_i \mu_i) \Rightarrow Y_i = X_i / w_i \frown relative Poisson$$

• Model for claim severity: Gamma,  $X \frown Gamma(w\alpha, \beta)$ 

$$\Rightarrow Y = X/w \frown Gamma(w\alpha, w\beta)$$
,  $E[X] = \alpha/\beta$ 

- Tweedie models:
  - EDM's that are scale invariant, those with variance function  $\nu(\mu) = \mu^{p}$ .
  - If 1 correspond to the Compound Poisson. Key ratio:Pure premium.
  - Model altogether the pure premium, not claim counts and size separately.

| Rating factor | Class | Duration | No.<br>claims | Relativities,<br>frequency | Relativities,<br>severity | Relativities,<br>pure premium |
|---------------|-------|----------|---------------|----------------------------|---------------------------|-------------------------------|
| Vehicle class | 1     | 9833     | 391           | 1.00                       | 1.00                      | 1.00                          |
|               | 2     | 8824     | 395           | 0.78                       | 0.55                      | 0.42                          |
| Vehicle age   | 1     | 1918     | 141           | 1.55                       | 1.79                      | 2.78                          |
|               | 2     | 16740    | 645           | 1.00                       | 1.00                      | 1.00                          |
| Zone          | 1     | 1451     | 206           | 7.10                       | 1.21                      | 8.62                          |
|               | 2     | 2486     | 209           | 4.17                       | 1.07                      | 4.48                          |
|               | 3     | 2889     | 132           | 2.23                       | 1.07                      | 2.38                          |
|               | 4     | 10069    | 207           | 1.00                       | 1.00                      | 1.00                          |
|               | 5     | 246      | 6             | 1.20                       | 1.21                      | 1.46                          |
|               | 6     | 1369     | 23            | 0.79                       | 0.98                      | 0.78                          |
|               | 7     | 147      | 3             | 1.00                       | 1.20                      | 1.20                          |

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

## 

| 36              |                 | as rating factors and relativities in current tariff |           |  |  |  |
|-----------------|-----------------|------------------------------------------------------|-----------|--|--|--|
| Table 2.8 Motor | cycle insurance | Class description                                    | Relativit |  |  |  |
| Rating factor   | Class           | Control and semi-central parts of                    | 7.678     |  |  |  |
| Geographic zone | 1               | Sweden's three largest cities                        |           |  |  |  |
|                 | 2               | Suburbs plus middle-sized cities                     | 4.227     |  |  |  |
|                 | 3               | Lesser towns, except those in 5 or 7                 | 1.336     |  |  |  |
|                 | 4               | Small towns and countryside, except 5-7              | 1.000     |  |  |  |
|                 | 5               | Northern towns                                       | 1.734     |  |  |  |
|                 | 6               | Northern countryside                                 | 1.402     |  |  |  |
|                 | 7               | Gotland (Sweden's largest island)                    | 1.402     |  |  |  |
| MC class        | 1               | EV ratio -5                                          | 0.625     |  |  |  |
|                 | 2               | EV ratio 6-8                                         | 0.769     |  |  |  |
|                 | 3               | EV ratio 9-12                                        | 1.000     |  |  |  |
|                 | 4               | EV ratio 13-15                                       | 1.406     |  |  |  |
|                 | 5               | EV ratio 16-19                                       | 1.875     |  |  |  |
|                 | 6               | EV ratio 20-24                                       | 4.062     |  |  |  |
|                 | 7               | EV ratio 25-                                         | 6.873 -   |  |  |  |
| Vehicle age     | 1               | 0-1 years                                            | 2.000     |  |  |  |
|                 | 2               | 2-4 years                                            | 2.000     |  |  |  |
|                 | 3               | 5- years                                             | 1.200     |  |  |  |
| Bonns class     |                 | the fore and days the cause stands and the second    | 1.000     |  |  |  |
|                 |                 | 1-2                                                  | 1.250     |  |  |  |
|                 | 2               | 3-4                                                  | 1.125     |  |  |  |
|                 | 3               | 5-7                                                  | 1.000     |  |  |  |