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1. Fundamental concepts

1.1. Set theory. Sets are denoted by capital letters A, B, etc. Exam-
ples of sets are the natural numbers N, the integers Z, the real numbers
R or the complex numbers C. Another example is the set of students in
Mathematical Economics. A set which is very common is the empty
set (the set containing no elements) which we denote by ∅. Objects
or elements of the sets are denoted by lowercase letters a, b, etc. Of
course, there are exceptions to these rules of thumb. If an element a
belongs to a set A we write

a ∈ A
Otherwise

a /∈ A
We say that A is a subset of B if a ∈ A, then a ∈ B. In that case we
write

A ⊂ B

Of course, if A ⊂ B and B ⊂ A then A = B.
A set can be specified by enumerating its elements

A = {a, b, c, d}
or by sharing a common property, i.e.,

B = {x : x satisfies property P}.
This reads, the set of elements x such that x satisfies property P. For
instance,

E = {x : x is an even integer}
Alternatively,

E = {x ∈ Z : x is even }

1.1.1. Constructing new sets from given sets. The union of two sets A
and B is the set formed by collecting all elements of A together with
the elements of B, i.e.,

A ∪B = {x : x ∈ A or x ∈ B}
Recall that "or" is mathematics is different from "or" in english. The
intersection of A and B is the set of elements that are both in A and
in B, i.e.,

A ∩B = {x : x ∈ A and x ∈ B}
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Of course ∪ and ∩ are commutative binary operations, i.e., A∪B =
B ∪A and A∩B = B ∩A. Moreover,A∪ ∅ = A and A∩ ∅ = ∅. When
A∩B = ∅ we say that A and B are disjoint. We also denote by A\B
the set of elements that are in A but not in B, i.e.

A \B = {x ∈ A : x /∈ B}

Exercise 1 (DeMorgan’s laws). Consider the sets A, B and C. Show
that

(1) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
(2) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
(3) A \ (B ∪ C) = (A \B) ∩ (A \ C)

Given a sequence of sets A1, A2, and so on, the union of all An,
n ∈ N is ⋃

n∈N

An = {x : x ∈ An for at least one n ∈ N}

Similarly, ⋂
n∈N

An = {x : x ∈ An for every n ∈ N}

The Cartesian product of two sets A and B is denoted by A×B and
is defined to be the set of ordered pairs (a, b) where a ∈ A and b ∈ B1,
i.e.,

A×B = {(a, b) : a ∈ A and b ∈ B}

As an example,

R× R = {(x, y) : x ∈ R and y ∈ R}

Of course, this definition extends to the Cartesian product of any finite
number of sets. In particular, the Cartesian product of n copies of a
set A is denoted by An. For instance, R3 = R× R× R.

Exercise 2. Sketch in a paper the following sets:

(1) A = {x ∈ R : x2 > 1}
(2) B = {x ∈ R : x3 > 1 and x4 < 16}
(3) C = {x : Z : x2 < 2 and x is even}
(4) B ∪ C
(5) A×B
(6) D = {(x, y) ∈ R2 : x2 + y2 ≤ 4}
(7) E = {(x, y) ∈ R2 : x2 ≤ y and 1 ≥ y + x2}

1An ordered pair (a, b) can be represented in set theory by {{a}, {a, b}}.
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1.2. Functions. A function f is a rule of assignment together with
two sets A and B such that to each element of A associates a unique
element in B. The set A is commonly known as domain and B the
range. This notion is usually written as

f : A→ B

It is also common to say that f is a mapping from A to B. Given an
element a ∈ A, its corresponding element in B is denoted by f(a), also
called the value (or image) of f at a. The set of all values is called the
image set,

image(f) = {f(a) : a ∈ A}
It is common to define a function by specifying the domain and values
that can take. For instance, let f : R→ R be the function such that

f(x) = x2 + 1

Another example of a function is the identity function id : A → A
where id(a) = a for every a ∈ A. The graph of a function f : A→ B
is the subset of the Cartesian product A×B defined by

graph(f) = {(a, b) ∈ A×B : b = f(a)} = {(a, f(a) : a ∈ A}
Given two functions f : A → B and g : C → A we define the compo-
sition function f ◦ g : C → B as f ◦ g(x) = f(g(x)). Notice that the
domain of f has to be equal to the range of g for the composition to
make sense.

A function f : A → B is said to be injective if a 6= b implies that
f(a) 6= f(b). Or equivalently, if f(a) = f(b) then, a = b. It is sur-
jective if for every b ∈ B there is a ∈ A such that b = f(a). If f
is both injective and surjective, then it is called bijective (or a one-
to-one correspondence). If f is bijective, then there is a function
f−1 : B → A called the inverse of f . The inverse is defined by the
property that f ◦ f−1 = f−1 ◦ f = id. Two sets A and B have the same
cardinality if there is a bijective function mapping A to B. A set A is
finite if there is a bijection mapping A to {1, . . . , n} for some n ∈ N.
In this case n is the cardinality of A. A set is called infinite if it is
not finite. We say that A is countable if there is a bijection mapping
A to N . Otherwise, it is called uncountable. For instance, the set of
all integers Z and the set of all rationals Q is countable. The set of all
real numbers R is uncountable.

Exercise 3. Sketch the graph of the following real valued functions
f : D → R, determine if are injective/surjective and compute its inverse
if exists:

(1) f(x) = x3 + 1 with x ∈ R
(2) f(x) = x2 − x with x ∈ R
(3) f(x) =

√
x+ 1 with x > 0.

(4) f(x) = x−1
x+1

with x > −1
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(5) f(x) = 2e−x with x ∈ R
(6) f(x) = log(x2 + 1) with x > 0

Exercise 4.
(1) Find a bijective function mapping N to Z.
(2) Find a bijective function mapping R to ]− 1, 1[.

2. Metric Spaces

Let X be a set. A metric2 in X is a function d : X ×X → R such
that for every x, y, z ∈ X it satisfies

(1) d(x, y) ≥ 0
(2) d(x, y) = 0 iff3 x = y
(3) d(x, y) = d(y, x)
(4) d(x, z) ≤ d(x, y) + d(y, z)

The pair (X, d) is called a metric space. The 4th property is known
as the triangle inequality. It is common to say that X endowed with
the metric d is a metric space. The elements of X are called points.
As an example, let X = Rn with n ∈ N and d be the usual Euclidean
distance

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

It is simple to see that d as defined above satisfies the 4 axioms of a met-
ric. Hence, (Rn, d) is a metric space, also known as Euclidean space.
As another example, let X = Z2 with the Manhattan distance

d1(x, y) = |x1 − y1|+ |x2 − y2|.
It is easy to see that d1 as defined above is also a metric. Thus (Z2, d1)
is a metric space.

Finally, to give a more abstract example, let A be a set and consider
the collection X of all bounded4 functions f : A → R. We endow X
with the metric5

ρ(f, g) = sup
a∈A
|f(a)− g(a)|

Then (X, ρ) is a metric space. The points of X are functions and ρ
measures the distance of any two functions in X.

Informally, a metric space is a set of points for which we can measure
distances.

2Also called distance
3if and only if
4f is bounded if there is M ≥ 0 such that |f(a)| ≤M for every a ∈ A
5The supremum of a set A ⊂ R, which we denote by supA, is the least element in

R that is greater than or equal to all elements of A. As an example, sup]−4, 5[= 5.
For some sets the supremum might not exist, e.g., [−1,+∞[ has no supremum. In
this case it is common to formally write sup [−1,+∞[ = +∞. If the supremum of a
set A belongs to A, then we say that A has a maximum and write maxA. Similar
considerations hold for the infimum and minimum.
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In order to reduce the level of abstraction, throughout the rest of
this section we will stick with the Euclidean space (Rn, d), although
the results we will prove are also valid in abstract metric spaces.

Exercise 5.
(1) Show that the following functions d : R2 × R2 → R satisfy the

four axioms of a metric:
(a) d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2

(b) d(x, y) = |x1 − y1|+ |x2 − y2|
(c) d(x, y) = max{|x1 − y1|, |x2 − y2|}

(2) For each of the metrics above sketch the set

{x ∈ R2 : d(x, 0) = 1}.

2.1. Open and closed sets. The open ball of radius r > 0 centred
at a ∈ Rn is the set

B(a, r) = {x ∈ Rn : d(x, a) < r}
Let A ⊂ Rn be a subset. We say that A is open if for every a ∈ A there
is r > 0 such that B(a, r) ⊂ A. A point a ∈ A is called interior to A
is there is r > 0 such that B(a, r) ⊂ A. The set of interior point to A is
denoted by int(A). Clearly, A is open iff all its points are interior to A,
i.e., int(A) = A. Obviously, Rn is open, and by convention the empty
set ∅ is open. The collection of all open sets is called a topology.

We say that A is closed if its complement Rn \ A is open.
As an example, in R, the intervals

]− 1, 4[ and ]−∞, 0[

are open6 and the sets

{0}, [−1, 4] and [1,+∞[

are closed. Notice that R =] −∞,+∞[ is both open and closed. Of
course, there are sets which are neither open nor closed, e.g., the inter-
val [1, 3[.

For more examples of open and closed sets, consider in R2, the open
ball

B(0, 1) = {(x, y) ∈ R2 : x2 + y2 < 1}
and the closed square [0, 1]2 = [0, 1]× [0, 1]. There are plenty of other
examples as the following result shows.

Lemma 2.1. The following holds:
(1) Every open ball is an open set.
(2) An arbitrary union of open sets is open.
(3) The intersection of a finite number of open sets is open.

Proof. Exercise. �

6An equivalent notation for writing open intervals is (−1, 4).
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Notice that a countable intersection of open sets might not be open
as the following exercise shows.

Exercise 6. Consider the open intervals An =]−1/n, 1/n[ with n ∈ N.
Show that ⋂

n∈N

An = {0}.

A neighbourhood of a point a ∈ Rn is any set V which contains
an open ball B(a, r) for some r > 0. Of course, any open ball B(a, r)
is a neighbourhood of a.

Given a subset A ⊂ Rn, a point x ∈ Rn is called an accumulation
point7 of A if any neighbourhood of x contains at least one point in A
different from x itself, i.e.,

∀ r > 0, (B(x, r) \ {x}) ∩ A 6= ∅.
As an example, 0 is an accumulation point of ]0, 1]. Also, it is an
accumulation point of the set {1/n : n ∈ N}.

The set of all accumulation points of A is denoted by A′, also known
as derivative of A.

The union A ∪ A′, which we denote by A, is called the closure of
the set A. The following result gives an equivalent characterization of
closed set. It basically says that a closed set contains all its accumula-
tion points.

Proposition 2.2. A = A if and only if A is closed.

Proof. Suppose that A is closed. In order to show that A = A we have
to show that A′ ⊂ A. So let x ∈ A′. If x /∈ A, because Rn \ A is open,
there is r > 0 such that B(x, r) ⊂ Rn \ A. But then x cannot be an
accumulation point of A. This shows that x has to belong to A.

Now suppose that A = A. Then A has to be closed because for any
a ∈ Rn \ A there is r > 0 such that B(a, r) ⊂ Rn \ A. Otherwise, a
would belong to A′ which cannot be. �

2.2. Compact sets. Given a subset A ⊂ Rn we define its diameter

diam(A) = sup{d(x, y) : x, y ∈ A}.
For instance, the open ballB(a, r) has diameter 2r. However, diam(R) =
∞.

We say that A is bounded if it has finite diameter.
A bounded and closed set is called compact. For instance, any

closed ball

B(a, r) = {x ∈ Rn : d(x, a) ≤ r}, a ∈ Rn, r > 0

is compact. In R, a closed ball is a closed interval [a, b], a < b.

7Also commonly called limit point.
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The following theorem gives an equivalent characterization of com-
pactness. An open cover of a set A ⊂ Rn is a collection of open sets
whose union contains A. A finite subcover is a finite collection of
sets that form a cover.

Theorem 2.3 (Heine - Borel). A is compact if and only if for every
open cover of A we can extract a finite subcover.

Proof. Check bibliography. �

Exercise 7. Sketch the following sets and decide which are open,
closed, bounded and compact.

(1) A = {(x, y) ∈ R2 : x ≥ 0}
(2) B = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4}
(3) A ∩B
(4) C = {(x, y) ∈ R2 : x2 + 2x > y}
(5) C \ A
(6) D = {(x, y, z) ∈ R3 : z > x2 + y2}
(7) E = {(x, y, z) ∈ R3 : − 1 ≤ z ≤ 1}
(8) F = {(x, y, z) ∈ R3 : z2 ≥ x2 + y2 and z ≤ 0}
(9) D ∩ E
(10) (D ∪ F ) ∩ E

Exercise 8. Show that:
(1) Any finite union of compact sets is compact.
(2) A ⊂ Rn is bounded if and only if A is compact.

Exercise 9. In this exercise you will study the Cantor8 set C. Let
A0 = [0, 1] and define A1 by cutting A0 in three equal parts and then
removing the middle part from A0. i.e., A1 = [0, 1/3]∪ [2/3, 1]. The set
A1 is a union of two disjoint intervals. Now for each interval of A1 we
proceed as before. Cut in three equals parts and remove from each its
middle part. Call this new set A2. Continue this process indefinitely to
obtain a sequence of sets An, n ≥ 0. The Cantor set is the intersection
of all these sets, i.e.,

C =
⋂
n≥0

An

(1) Obtain the analytic expression for A2.
(2) Show that each set An is a union of 2n disjoint closed intervals.
(3) Is An closed? Why?
(4) Prove that C is compact.

2.3. Limits. A sequence {xn}n∈N in a set A is an ordered list of points
in A indexed by N. Given a sequence {xn}n∈N in Rn, a point x ∈ Rn

is called the limit of the sequence {xn}n∈N if for every neighbourhood
V of x there is N ∈ N such that xn belongs to V for every n ≥ N .

8Check wikipedia.
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A sequence that has a limit is called convergent. We also denote its
limit by limn→∞ xn. Is is easy to see that the limit of a converging
sequence is unique.

Exercise 10. Show that the limit of a converging sequence is unique,
i.e., a converging sequence cannot more than one limit.

Using the limits of sequences we obtain another characterization of
closed sets.

Proposition 2.4. A set A ⊂ Rn is closed if and only if it contains the
limits of converging sequences in A.

Proof. Exercise. �

A sequence {xn}n∈N in Rn is called a Cauchy sequence if for any
r > 0 there is N ∈ N such that

d(xn, xm) < r, ∀n,m ≥ N.

It is easy to see that any convergent sequence is Cauchy. The other
direction is the content of the following theorem.

Theorem 2.5. A sequence in Rn is convergent if and only if it is a
Cauchy sequence.

The above theorem is not true for arbitrary metric spaces, i.e., there
are metric spaces for which some Cauchy sequence do not have a limit.
For instance, the metric space (]0, 1[, `) with the metric `(x, y) = |y−x|
has a Cauchy sequence xn = 1/n, n ∈ N that has no limit in the space
]0, 1[.

The metric spaces for which the theorem holds are called complete.
In this sense, Rn is complete, i.e., it contains the limits of all Cauchy
sequences. Complete metric spaces have no "holes"!

2.4. Continuous functions. Consider a subset A ⊂ Rn and a func-
tion f : A→ Rm. We say that f is continuous at x ∈ A if for every
convergent sequence {xn}n∈N with limit x ∈ A, the value sequence
{f(xn)}n∈N is convergent with limit f(x), i.e.,

x = lim
n→∞

xn =⇒ f(x) = lim
n→∞

f(xn).

A continuous function is any function that is continuous at each
point of its domain. Informally speaking, a continuous function maps
convergent sequences into convergent sequences. Well-known examples
of continuous functions f : R → R are the polynomial functions and
trigonometric functions. Another example of a continuous function is
f :]0,+∞[→ R with f(x) = 1/x. This function is continuous, even
though it becomes unbounded for points close to 0 (which does not
belong to the domain).



10 JOSÉ PEDRO GAIVÃO

The following is a classical result. Given a set A ⊂ Rn we denote by
f(A) its image set, i.e., the set of all values of f . Formally,

f(A) = {f(a) : a ∈ A}.

Proposition 2.6. If A is compact and f : A→ Rn is continuous, then
the image set f(A) is also compact.

Proof. Check bibliography. �

As a corollary of this proposition we obtain the Weierstrass theorem.
We say that a function f : A → R has a maximum if there is a ∈ A
such that f(x) ≤ f(a) for every x ∈ A. In a similar way we define the
minimum.

Theorem 2.7 (Weierstrass). Every continuous function f : A → R
defined on a compact domain A ⊂ Rn has a maximum and a minimum.

Proof. By the previous proposition, f(A) ⊂ R is compact. Since f(A)
is compact in R is has a maximum valueM ∈ f(A) and minimum value
m ∈ f(A). Take x∗ ∈ f−1(M) and x∗ ∈ f−1(m). Then

∀x ∈ A f(x∗) ≤ f(x) ≤ f(x∗).

�

An an application of this theorem, consider the problem of finding
the maximum of a continuous function f : A → R over a compact
domain A. The domain may be given by inequalities like in Exercise 7.
The Weierstrass theorem says that the maximization problem has a
solution. However, it does not give a way to compute it explicitly.
Later in the course we will learn a method that allows to solve certain
maximization problems explicitly.

Exercise 11. Show, using the definition of continuity, that given two
continuous functions f : R → R and g : R → R, the composition
function f ◦ g is also continuous.

Exercise 12. For each of the following functions f : D → R determine
its continuity points and, using the Weierstrass theorem, decide if the
function has a maximum or minimum.

(1) f(x) = x2 where D = {x ∈ R : |x| ≤ 1}
(2) f(x) = x3 − x2 + x− 1 where D = [−2,−1] ∪ [1, 2]

(3) f(x) = x cos2(1/x) where D =
{

(−1)n
2πn

: n ∈ N
}
∪ {0}

(4) f(x, y) = xy where D = [−1, 1]2

(5) f(x, y) = x log(y) where D =]0, 1]2

(6) f(x, y) = e−x
2−y2 where D = R2
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3. Fixed point theorems

Let A ⊂ Rn and f : A→ Rn be a function. We say that x ∈ A is a
fixed point of f if

f(x) = x.

Finding fixed points of functions is of great importance for Economics.
We will give sufficient conditions for the existence of fixed points and
then give an application to General Equilibrium Theory.

3.1. Banach fixed point. A function f : A → Rn is called a Lips-
chitz contraction if there is λ ∈]0, 1[ such that

d(f(x), f(y)) ≤ λ d(x, y), ∀x, y ∈ A.

Informally speaking, a Lipschitz contraction contracts distances be-
tween points.

Theorem 3.1 (Banach). If f : A → Rn is a Lipschitz contraction,
f(A) ⊂ A and A is closed, then f has a unique fixed point x̄ ∈ A.

Proof. Let x0 ∈ A. Consider the following sequence of points in A,

xn+1 = f(xn), n = 1, 2, . . .

Since f is a Lipschitz contraction

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ λ d(xn, xn−1).

Iterating the previous inequality we get

d(xn+1, xn) ≤ λn−1 d(x2, x1), n ∈ N

This shows that limn→∞ d(xn+1, xn) = 0. In fact, with a little effort we
can show that {xn}n∈N is a Cauchy sequence (try to prove it!). Thus,
{xn}n∈N is a convergent sequence (by Theorem 2.5). This means that
{xn}n∈N has a limit point x̄ ∈ Rn. However, A is closed, so it contains
all its accumulation points. Therefore, x̄ ∈ A. This shows the existence
part of the theorem. To show uniqueness, let x̄1 and x̄2 be two fixed
points inside A. Then

d(x̄1, x̄2) = d(f(x̄1), f(x̄2)) ≤ λ d(x̄1, x̄2)

which can only be true if x̄1 = x̄2. �

Example 3.2. As an example, let f : B(0, 1) → Rn defined by
f(x) = λx where λ ∈]0, 1[ and B(0, 1) is the closed ball of radius
1 centred at the origin. In other words, f takes any point in the closed
ball and contracts it towards the origin by a factor λ. Clearly, f is
a Lipschitz contraction because d(f(x), f(y)) = d(λx, λy) = λd(x, y).
Since f(B(0, 1)) ⊂ B(0, 1) and B(0, 1) is closed, the Banach fixed point
theorem says that f has a unique fixed point inside B(0, 1). In fact,
that fixed point is the origin because, f(0) = 0.
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Example 3.3. Consider the function f : [−1, 1] → [−1, 1] defined by
f(x) = sin(λx) where λ ∈]0, 1[. To see that f is a Lipschitz contraction
we compute

|f(y)− f(x)| =
∣∣∣∣∫ y

x

f ′(z) dz

∣∣∣∣
=

∣∣∣∣∫ y

x

λ cos(λx) dz

∣∣∣∣
≤
∫ y

x

λ dz

≤ λ|y − x|

So, by the Banach fixed point theorem, we conclude that 0 is the only
fixed point of f in the interval [−1, 1].

Example 3.4 (Zeros of functions). The Banach fixed point theorem
can be used to show the existence of zeros of functions g : R → R.
Indeed, let

f(x) = x+ g(x)

If f is a Lipschitz contraction on a closed set A and f(A) ⊂ A, then
it has a unique fixed point x̄ in A, i.e., x̄ = x̄ + g(x̄). Then x̄ is the
unique zero of g in the set A.

Example 3.5 (Price Adjustment equation). Consider a market with
single commodity. Let D(p) denote the demand function at price p
and S(p) the supply function at price p. A simple model for price
adjustment is the following equation

pt+1 − pt = k(D(pt)− S(pt))

where k > 0 is some coefficient. We see that an increase of the price is
followed by an excess demand and vice-versa. The question is whether
the price converges to an equilibrium? An equilibrium price p∗ has zero
excess demand, i.e., has to satisfy the fixed point equation

p∗ = f(p∗) where f(p) = p+ k(D(p)− S(p)).

To give an answer to the problem, we simplify the demand and supply
function and consider:

D(p) = a− dp and S(p) = −b+ sp.

where a, b, d, s are positive numbers. Then, the excess demand is

D(p)− S(p) = a+ b− p(d+ s)

So, the price at equilibrium is given by

p∗ =
a+ b

d+ s
.
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For d + s < 2/k, the function f is a Lipschitz contraction. Hence, by
the Banach fixed point theorem, pt converges as t→ +∞ to the price
at equilibrium p∗.

Exercise 13. Sketch the graph of f in Example 3.3 and interpret the
fixed point geometrically (also draw the bisectrix, i.e., y = x).

Exercise 14. Show that f :]0, 1/4[→]0, 1/4[ defined by f(x) = x2 is
a Lipschitz contraction. Can you conclude that f has a unique fixed
point?

Exercise 15. Determine whether the following functions f : D → Rn

are Lipschitz contractions. For each function determine its fixed points.
(1) f(x) = 1

4
x(1− x2) with D = [−1, 1]

(2) f(x) = arctan(x/2) with D = R
(3) f(x) = 1

4
sin(x3) with D = [−1, 1]

(4) f(x) =
√

1 + x with D = [0,+∞[
(5) f(x, y) =

(
x
2

+ 5, y
3
− 1
)
with D = R2

Exercise 16. Use the Banach fixed point theorem to show that the
sequence xn+1 =

√
1 + xn, n ∈ N and x0 = 0 converges to the golden

ratio
1 +
√

5

2
=

√
1 +

√
1 +
√

1 + · · ·.

3.2. Brouwer fixed point. A setK ⊂ Rn is convex if any two points
in K can be joining by a straight segment contained in K, i.e.,

∀x, y ∈ K, ∀λ ∈ [0, 1], λx+ (1− λ)y ∈ K.
For instance, any open (or closed) ball is convex. The following theorem
is due to Luitzen Brouwer whose proof we omit.

Theorem 3.6. If K ⊂ Rn is compact and convex, and f : K → K is
continuous, then f has a fixed point in K.

The one-dimensional version of the theorem is easy to prove and
understand. It says that any continuous function f : [a, b]→ [a, b] has
a fixed point. In other words, the graph of f has to cross the diagonal
of the square [a, b]× [a, b]. Do a picture to convince yourself.

A corollary of Brouwer fixed point theorem is the following.

Corollary 3.7. Any continuous function f : B(a, r) → B(a, r) has a
fixed point.

Notice that the convexity assumption in the theorem is necessary.
Indeed, consider the function f : D → D defined on the annulus
D = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4} given by f(x, y) = (−y, x).
Geometrically, f rotates anti-clockwise any point (x, y) by 90 degrees.
Clearly, f is continuous, D is compact, but f has no fixed point. In-
deed, f(x, y) = (x, y) if and only if x = y = 0. However, (0, 0) is not in
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D. This is not in contradiction with the Brouwer fixed point because
D is not convex, so we cannot apply the theorem to f .

Example 3.8 (Application in a Pure Exchange Economy). Consider
an economy with m consumers and n commodities. No production is
possible and consumers engage in exchanging commodities to maximize
a utility function. We also assume that consumers have a fixed budget.
So each consumer i initially has an amount wi,j of commodity j. Let
p = (p1, . . . , pn) denote the price vector of the commodities, i.e., pj is
the unit price of commodity j. If xi,j(p) denotes the final consumer
i demand of commodity j, then the following budget constraint holds
for each consumer i,

n∑
j=1

pjwi,j =
n∑
j=1

pjxi,j(p)

Summing both sides over i we get the Walras’s law,
n∑
j=1

pjgj(p) = 0

where wj is the initial aggregate amount of commodity j,

wj =
m∑
i=1

wi,j

and

gj(p) =
m∑
i=1

xi,j(p)− wj

is the aggregate excess demand. The following natural question arises:
is it possible to find a price vector so that the aggregate demand for
each commodity does not exceed its initial aggregate amount? Prices
with this property are called Walras equilibrium prices.

It is clear that only relative prices matter in this problem. Thus we
suppose that

p ∈ ∆n−1 = {(x1, . . . , xn) ∈ Rn
+ : x1 + · · ·+ xn = 1}.

Here Rn
+ denotes the set of vectors x ∈ Rn with non-negative entries,

i.e., xj ≥ 0 for every j = 1, . . . , n. The set ∆n−1, called the simplex of
dimension n− 1, represents the set of relative price vectors.

Now, formalizing the question above, we want to find p∗ ∈ ∆n−1 such
that

gj(p) ≤ 0 for every j = 1, . . . , n

In order to apply the Brouwer theorem, we define a function G :
∆n−1 → ∆n−1. First, it is easy to see that ∆n−1 is compact and
convex. Now we define the function

G(p) =
1

d(p)
(p1 + max{0, g1(p)}, . . . , pn + max{0, gn(p)})
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where

d(p) = 1 +
n∑
j=1

max{0, gj(p)}

Note that d(p) ≥ 1. ThusG is continuous under the reasonable assump-
tion that the demand functions xi,j(p) are also continuous. Applying
the Brouwer fixed point theorem to get p∗ ∈ ∆n−1 satisfying

p∗ = G(p∗).

In coordinates, the previous fixed point equation is

d(p∗)(p∗1, . . . , p
∗
n) = (p∗1 + max{0, g1(p∗)}, . . . , p∗n + max{0, gn(p∗)})

This means that

(d(p∗)− 1)p∗j = max{0, gj(p∗)}, j = 1, . . . , n

By Walras’s law, there must exist a positive price p∗k > 0 which has
gk(p

∗) ≤ 0. Indeed, if gj(p∗) > 0 for every j whose price p∗j is positive,
then the sum

∑
j p
∗
jgj(p

∗) would also be positive contradicting Walras’s
law. Therefore, max{0, gk(p∗)} = 0, which implies that d(p∗) = 1.
Thus, max{0, gj(p∗)} = 0 for every j which implies that

g1(p
∗) ≤ 0, . . . , gn(p∗) ≤ 0

as we wanted to show.

Exercise 17. Decide which of the following sets are convex:
(1) A = {(x, y) ∈ R2 : y ≥ x2}
(2) B = {(x, y) ∈ R2 : y < x2}
(3) C = {(x, y) ∈ R2 : x2

4
+ y2 ≤ 1}

(4) A ∩ C
(5) C \B
(6) D = {(x, y, z) ∈ R3 : x+ y + z = 1, x, y, z ≥ 0}

Exercise 18. Consider the function f(x) = 1
2
(x + 1) defined on the

interval ]0, 1[. Show that f(]0, 1[) ⊂]0, 1[. Does f has a fixed point in
]0, 1[? Can you apply the Brouwer fixed point theorem to f ?

Exercise 19. Consider the following matrix

A =

0 1/2 1
1 0 0
0 1/2 0


and define the function f(v) = Av where v ∈ ∆2 = {(x, y, z) ∈ R3 : x+
y + z = 1, x, y, z ≥ 0}.

(1) Show that f(∆2) ⊂ ∆2.
(2) Can you apply the Brouwer fixed point theorem to f? Can you

show that f has a fixed point?
(3) If yes, compute the fixed points of f explicitly.
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Exercise 20. Find a continuous function f : [0, 1[→ [0, 1[ with no fixed
points. Can you apply the Brouwer fixed point theorem to f?

Exercise 21. Find a continuous function f : [0, 1] → [0, 1] with an
infinite number of fixed points.

Exercise 22. Consider the function f : [0, 1]→ [0, 1] defined by

f(x) =

{
2x, x ≤ 1/2

2− 2x, x > 1/2

(1) Can you apply the Brouwer fixed point to f?
(2) Compute the fixed points of f and of f ◦ f (hint: draw the

graph of the functions).
(3) How many fixed points has fn = f◦· · ·◦f? Here, fn denotes the

composition of f with itself n times (f 2 = f ◦ f , f 3 = f ◦ f ◦ f ,
etc.)

Exercise 23. Consider a pure exchange economy with 2 commodities
and 2 consumers. Denote by p1 and p2 the relative price of commodity
1 and 2, respectively. The 1st consumer has an initial amount of 1 unit
of commodity 1 and 2 units of commodity 2. The 2nd consumer has an
initial amount of 2 units of commodity 1 and 1 unit of commodity 2.
Consumers engage in exchanging with the following demand functions

x1,1(p) =
α(p1 + 2p2)

p1
, x1,2(p) =

(1− α)(p1 + 2p2)

p2

for the 1st consumer and

x2,1(p) =
α(2p1 + p2)

p1
, x2,2(p) =

(1− α)(2p1 + p2)

p2

for the 2nd consumer, where α ∈ [0, 1]. Recall that xi,j(p) is the de-
mand of commodity j of consumer i. Check that the Walras’s law is
satisfied. Determine an equilibrium price for this economy.

4. Hyperplane separation theorem

Given x, y ∈ Rn define the inner product

x · y =
n∑
i=1

xiyi.

Given any p ∈ Rn and c ∈ R we denote by H(p, c) the hyperplane,

H(p, c) = {x ∈ Rn : p · x = c}.
Notice that the same hyperplane can be represented with infinitely
many pairs (p, c). In fact, H(p, c) = H(αp, αc) for any α ∈ R \ {0}.
Thus, the direction of p is uniquely determined but not its magnitude.
Geometrically, H(p, c) can be seen as the set of vectors with base point
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h p that are orthogonal9 to p. Here, h = c/(p · p) which can be seen as
the height of H(p, c). The vector p is orthogonal to the hyperplane. If
c = 0, thenH(p, 0) is simply the set of vectors in Rn that are orthogonal
to p. As an example,

H((1, 1), 1) = {(x, y) ∈ R2 : x+ y = 1}.
Notice that, hyperplanes in R2 are lines and hyperplanes in R3 are
planes. Any hyperplane separates Rn in two regions: the upper half-
space

H+(p, c) = {x ∈ Rn : p · x ≥ c}
and the lower half-space

H−(p, c) = {x ∈ Rn : p · x ≤ c}
Given two subsets A and B of Rn we say that A and B are sep-

arated by a hyperplane if there is p ∈ Rn and c ∈ R such that
A ⊂ H−(p, c) and B ⊂ H+(p, c). The hyperplane separation theorem
gives a sufficient condition for any two sets to be separated.

Theorem 4.1 (Separation theorem). If A and B are disjoint and con-
vex, then A and B can be separated by a hyperplane.

Without the convexity assumption there is no guarantee that A and
B can be separated. For instance, the following sets cannot be sepa-
rated by a line,

A = {(x, y) ∈ R2 : x2 + y2 ≤ 1}
B = {(x, y) ∈ R2 : 2 ≤ x2 + y2 ≤ 3}

Notice that B is not convex, so the theorem does not apply.

Exercise 24. Sketch the following hyperplanes and half-spaces:
(1) H((1, 1),−1)
(2) H+((2,−1), 1)
(3) H((1, 0,−1), 1)
(4) H−((0, 1, 0), 2)

Exercise 25.
(1) Let A be the set of points in Rn whose first coordinate is equal

to a ∈ R. Find p ∈ Rn and c ∈ R such that A = H(p, c).
(2) Find a hyperplane H(p, c) that separates ∆2 = {(x, y, z) ∈

R3
+ : x+ y + z = 1} and A = {(x, y, z) ∈ R3 : x = −2}.

(3) Find the hyperplane H(p, c) that contains the points (1, 0, 0),
(1, 1, 0) and (0, 1, 1).

Exercise 26. Explain, using the hyperplane separation theorem, if it
is possible to prove the existence of a hyperplane separating A and B:

9Also called perpendicular. Recall that two vectors x and y in Rn are orthogonal
iff x · y = 0.
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(1) A = {(x, y) ∈ R2 : x2 + y2 < 1} and B = {(x, y) ∈ R2 : x+ y =
2}

(2) A = {(x, y) ∈ R2 : x2 + y2 < 3} and B = {(x, y) ∈ R2
+ : x+ y =

1}
(3) A = C ∩ D with C = {(x, y) ∈ R2 : x2 + y2 = 2} and D =

[−6, 6]× [−5, 5], and B = [−1, 1]× [−1, 1]

5. Correspondences

To motivate the introduction of correspondences we begin with two
examples.

Example 5.1. Given a vector of prices p = (p1, . . . , pn) ∈ Rn
+ and an

income I > 0 the budget set is

B(p, I) = {x ∈ Rn
+ :

n∑
i=1

pixi ≤ I}.

So, to each pair (p, I) it corresponds a budget set B(p, I) ⊂ Rn.

Example 5.2. Consider a firm producing a single commodity at a cost

c(q) =

{
0, q = 0

a+ bq + cq2, q > 0

where a, b, c > 0. Suppose that the commodity has output price p > 0
with p > b. Then the profit is

π(q) = pq − c(q) =

{
0, q = 0

−a+ (p− b)q − cq2, q > 0

The quantity q∗ that maximizes the profit is given by π′(q∗) = 0, i.e.,
q∗ = (p−b)/(2c). The corresponding profit is π(q∗) = (p−b)2/(2c)−a.
Therefore, π(q∗) ≥ 0 if and only if p ≥ b +

√
2ac. Thus, the profit

maximizing choice of output is

q(p) =

{
0, p ≤ b+

√
2ac

(p− b)/(2c), p ≥ b+
√

2ac

So, for the price p = b +
√

2ac there corresponds a set of quantities
{0,
√
a/(2c)}, allowing the producer to earn zero profit.

These examples can be described using correspondences. Given two
sets A and B, a correspondence F is a rule that to each a ∈ A
associates a subset F (a) ⊂ B. It is common to write F : A ⇒ B. The
set A is called the domain of F . The graph of a correspondence F is

graph(F ) = {(x, y) ∈ A×B : x ∈ A, y ∈ F (x)}
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Example 5.3. As an example, consider the graph of the correspon-
dences R ⇒ R,

F (x) =

{
[1, 3], x < 1

{2}, x ≥ 1
, G(x) =


[x− 7, x− 5], x < 0

]6, 9[, x = 0

]x+ 7, x+ 8], x > 0

5.1. Continuity of correspondences. We say that a correspondence
F : A ⊂ Rn ⇒ Rm has a closed graph at x if for any convergent
sequence {(xn, yn)} ⊂ graph(F ) with limit (x, y) ∈ A × Rm we have
that y ∈ F (x), i.e., (x, y) ∈ graph(F ). We say that F has the closed
graph property if it has closed graph at each x ∈ A.

Proposition 5.4. If F has the closed graph at x, then F (x) is a closed
set.

Proof. Exercise. �

Proposition 5.5. If the graph of F is closed, then F has the closed
graph property.

Proof. Exercise. �

The correspondence F in Example 5.3 does not have the closed graph
at x = 1.

Example 5.6. The budget correspondence in Example 5.1 that to each
p ∈ Rn

+ corresponds B(p, I) with I fixed, has the closed graph property.

We say that a correspondence F : A ⊂ Rn ⇒ Rm is upper hemi-
continuous (u.h.c) at x ∈ A if for every open set U containing F (x)
there is an open set V containing x such that F (x) ⊂ U for every
x ∈ A ∩ V . We say that F is upper hemicontinuous if it is upper
hemicontinuous at each x ∈ A.

The following result shows that upper hemicontinuity is the same as
continuity when the correspondence is single-valued. That is, upper
hemicontinuity is an extension of continuity of functions to correspon-
dences.

Proposition 5.7. A function f : A ⊂ Rn → Rm is continuous at
x ∈ A if and only if the correspondence F : A ⊂ Rn ⇒ Rm defined by
F (x) = {f(x)} is u.h.c at x ∈ A.

The following result shows that if the set F (x) is closed but F does
not have the closed graph at x, then F cannot be upper hemicontinuous
at x.

Proposition 5.8. If F is u.h.c at x ∈ A and F (x) is closed, then F
has the closed graph at x
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Proof. Let (xn, yn) ∈ graph(F ) converge to (x, y) by y /∈ F (x). There
is a closed ball B(y, r) not intersecting F (x). The complement set
U = Rm \B(x, r) is open. By u.h.c, there is an open set V containing
x such that F (x) /∈ B(x, r) for every x ∈ V . But for large n, xn ∈ V ,
thus yn /∈ B(y, r) contradicting the convergence. �

The following result gives a sufficient condition for checking that a
correspondence is upper hemicontinuous at a point. We say that F is
bounded near x if there is a neighbourhood V of x and a closed ball
B ⊂ Rm such that F (y) ⊂ B for every y ∈ V .

Proposition 5.9. If F has the closed graph at x and F is bounded
near x, then F is u.h.c at x.

Proof. See the bibliography. �

With this proposition we finally arrive at a simple criterion to decide
if a given correspondence is upper hemicontinuous.

Theorem 5.10. If the graph of F is compact, then F is upper hemi-
continuous.

Proof. To prove the theorem we use Proposition 5.9. Since the graph
of F is closed (because it is compact by assumption), we know by
Proposition 5.5 that F has the closed graph property. Moreover, F is
bounded near any point x ∈ A. Otherwise, the graph of F would not
be compact. Hence, the hypothesis of Proposition 5.9 are met for any
point x ∈ A. So, F is upper hemicontinuous. �

Exercise 27. Decide if the following correspondences F : [0, 1] ⇒ [0, 1]
are upper hemicontinuous and/or have the closed graph property:

(1)

F (x) =

{
[1/4, 3/4], x < 1/2

[1/2, 3/4], x ≥ 1/2

(2)

F (x) =

{
[x2, (x+ 1)/2], x < 1

{0, 1}, x = 1

(3)

F (x) =

{
]x, 1− x[, x < 1/2

{1/4, 3/4}, x ≥ 1/2

(4)
F (x) =]x/2, (x+ 1)/2[
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5.2. Kakutani fixed point. Now we are able to state the main result
of this section, i.e., the existence of a fixed point for correspondences.
We say that x ∈ A is a fixed point for F if x ∈ F (x).

Theorem 5.11 (Kakutani fixed point theorem). Let K ⊂ Rn be a
compact and convex set. If

(1) F : K ⇒ K is upper hemicontinuous
(2) F (x) is convex and non-empty for every x ∈ K

then F has a fixed point in K.

Proof. Check the bibliography. �

Exercise 28. Explain if the following correspondences satisfy the hy-
pothesis of the Kakutani fixed point theorem. Compute the fixed points
if they exist.

(1) F : [0, 2] ⇒ [0, 2] defined by

F (x) =


{1}, 0 ≤ x < 1

[1, 2], x = 1

{2}, 1 < x ≤ 2

(2) F : [0, 20] ⇒ [0, 20] defined by

F (x) =


{10− x}, 0 ≤ x < 7

[3, 20], x = 7

{x− 4}, 7 < x ≤ 20

(3) F : [−6, 20] ⇒ [−6, 20] defined by

F (x) =


{x+ 1}, −6 ≤ x < 7

[−6, 10], x = 7

{(x+ 5)/2}, 7 < x ≤ 20

(4) F : [−6, 20] ⇒ [−6, 20] defined by

F (x) =


{x+ 1}, −6 ≤ x < 7

[−6, 6] ∪ [8, 10], x = 7

{(x+ 5)/2}, 7 < x ≤ 20

6. Optimization

Optimization problems arise rather naturally in Economics. Con-
sider for instance, the problem of maximizing utility subject to budget
constrains, i.e.,

maximize u(x)

subject to x ∈ B(p, I)
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where u : Rn
+ → R is a utility function, I > 0 the income, p ∈ Rn

+ the
vector price and B(p, I) the budget set

B(p, I) = {x ∈ Rn
+ : p · x ≤ I}.

One can also consider the problem of minimizing the spending p ·u but
not going below a certain utility level `, i.e.,

minimize p · x
subject to u(x) ≥ `

In general, given a function x 7→ f(x) ∈ R and a set D ⊂ Rn, the
optimization problem is

maximize (minimize) f(x)

subject to x ∈ D
The function f is usually called the objective function and the set
D the constraint set.

Recall, by the Weierstrass theorem, if the objective function f is
continuous in D and the constraint set D is compact, then f attains a
maximum and a minimum in D, i.e., there is x∗, x∗ ∈ D such that

f(x∗) ≤ f(x) ≤ f(x∗), ∀x ∈ D
This means that the optimization problem has a solution when f is
continuous and D compact. However, the Weierstrass theorem, does
not provide an explicit solution, only its existence. For many practical
applications one needs a method to explicitly compute a solution.

Depending on the function f and the set D there are many opti-
mization problems. For instance, the linear optimization problem
(or linear programming) has

f(x) = c1x1 + · · ·+ cnxn, D = {x ∈ Rn : Ax ≤ b}
where A is an m× n matrix and b ∈ Rm. Given two vectors u, v ∈ Rm

we write u ≤ v meaning that ui ≤ vi for each component i = 1, . . . ,m.
Other optimization problems are called integer programming where

the variables are constrained to integer values, and convex optimiza-
tion where both utility function and the constraint set are convex.

6.1. Some terminology. Given D ⊂ Rn and a function f : D → R
we say that x∗ ∈ D is a maximizer of f on D if f(x) ≤ f(x∗) for
every x ∈ D. The value f(x∗) is called the maximum of f on D.
It is common to write maxD f for the maximum of f on D. A local
maximizer of f on D is a point x∗ ∈ D such that f(x) ≤ f(x∗) for
every x ∈ D∩B(x∗, r) and some r > 0. In this case, the value f(x∗) is
called a local maximum of f on D. Clearly, any maximizer is a local
maximizer. The converse is not true. To distinguish maximizers from
local maximizers we often call global maximizer (global maximum) to a
maximizer (maximum). With the correct modifications we can define
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minimizer (minimum) and local minimizer (local minimum). Maxi-
mizers and minimizers are called optimal10 points. If they are local,
then local optimal points. Their values are called (local) optimal
values.

Example 6.1. The function f(x) = 4x2 − 4x + 2 on D = R has a
minimum minD f = 1 with minimizer x = 1/2.

Example 6.2. The function f(x, y) = 1 − x2 − y2 on D = R2 has a
maximum maxD f = 1 with maximizer x = 0.

Example 6.3. The function f(x) = x3

3
−x onD = [−3, 3] has a optimal

points by Weirestrass theorem. In fact, maxD f = 6 and minD f = −6
with maximizer x = 3 and minimizer x = −3. The function also has a
local maximizer at x = −1 and a local minimizer at x = 1.

In order to systematically compute the local optimal points we first
study a simpler optimization problem called unconstrained opti-
mization, i.e., the problem of maximizing or minimizing a given func-
tion inside the interior of its domain.

6.2. Unconstrained optimization. Given a set D ⊂ Rn and a func-
tion f : D → R the derivative of f at x is row vector

Df(x) =
[
∂f
∂x1

(x) · · · ∂f
∂xn

(x)
]
.

We say that f is of class C1 if its partial derivatives ∂f
∂xi

are continuous
in D. The second derivative of f at x is the matrix

D2f(x) =


∂2f
∂x21

(x) · · · ∂2f
∂x1∂xn

(x)
... . . . ...

∂2f
∂xn∂x1

(x) · · · ∂2f
∂x2n

(x)

 .
We say that f is of class C2 if its partial derivatives ∂2f

∂xi∂xj
are contin-

uous in D. In this case, ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

and so D2f(x) is a symmetric
matrix, also called, the Hessian matrix.

Recall that int(D) is the set of all interior points to D, i.e., x ∈ D
is interior if there is r > 0 such that B(x, r) ⊂ D. We say that
x∗ ∈ int(D) is a critical11 point of f if

Df(x∗) = 0

It is easy to see that local optimal points are critical points.

Proposition 6.4. If x∗ ∈ int(D) is a local optimal point of f , then x∗
is a critical point.

10or extreme
11or stationary
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Proof. Check the bibliography. �

Clearly, not all critical points are local optimal points. For instance,
f(x) = x3 with D = R. We have f ′(x) = 3x2, thus x∗ = 0 is the single
critical point. However, x∗ = 0 is not a local optimal point, since the
function f increases for x > 0 and decreases for x < 0.

6.2.1. Second-order condition. To decide if a given critical point is a lo-
cal optimal point we need a criterion. First, recall that a square matrix
A is positive semi-definite, and we write A ≥ 0, if all eigenvalues
of A are non-negative, i.e., ≥ 0. If all eigenvalues are positive (> 0),
then A is positive definite, and we write A > 0. An alternative way
to check if A > 0 is the Sylvester’s criterion. This criterion says
that A is positive definite if and only if all its leading principal minors
are positive. A leading principal minor of A is the determinant of an
upper-left i-by-i corner of A. We denote the i-th leading principal mi-
nor by ∆i. Any square matrix A of dimension n has exactly n leading
principal minors since i = 1, . . . , n. For instance, the matrix

A =

2 0 1
0 3 −1
1 2 1


has the following leading principal minors

∆1 =
∣∣2∣∣ = 2, ∆2 =

∣∣∣∣2 0
0 3

∣∣∣∣ = 6, ∆3 =

∣∣∣∣∣∣
2 0 1
0 3 −1
1 2 1

∣∣∣∣∣∣ = 7

Since all leading principal minors are positive, we conclude that A > 0.
Finally, we say that A is negative (semi-)definite and write A < 0
(A ≤ 0), if −A is positive (semi-)definite. Notice that A < 0 if and
only if the i-th leading principal minor has sign (−1)i. Summarizing,

• A > 0 iff ∆i > 0 for every i = 1, . . . , n.
• A < 0 iff (−1)i∆i > 0 for every i = 1, . . . , n.

A point x∗ ∈ D is called a strict local maximizer of f on D if
there is r > 0 such that f(x) < f(x∗) for every x ∈ D ∩ B(x∗, r) and
x 6= x∗. Clearly, strict local maximizers are local maximizers but the
converse may not be true. Strict local minimizers are defined analo-
gously. We have the following criterion based on the second derivative
of f .

Theorem 6.5 (Second-order condition). Let f be of class C2 and x∗ ∈
int(D) be a critical point. The following holds:

• If D2f(x∗) < 0, then x∗ is a strict local maximizer.
• Conversely, if x∗ is a local maximizer, then D2f(x∗) ≤ 0.

Proof. Check the bibliography. �
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This theorem has a version for strict local minimizer where the
second-order condition reads D2f(x∗) > 0. In addition, D2f(x∗) ≤ 0
whenever x∗ is a local minimizer. As a consequence of the theorem,
if neither D2f(x∗) ≤ 0 nor D2f(x∗) ≥ 0, then the critical point x∗
is not a local optimal point. In this case, we say that x∗ is a sad-
dle point. Therefore, critical points are either local optimal points or
saddle points.

According to what has been said we have the following condition to
check if a critical point is a saddle point.

Proposition 6.6. If x∗ ∈ int(D) is a critical point, det(D2f(x∗)) 6= 0
and neither D2f(x∗) < 0 nor D2f(x∗) > 0, then x∗ is a saddle point.

Example 6.7. Let f(x, y) = x2−y2 withD = R2. The point (x∗, y∗) =
(0, 0) is a critical point of f . Indeed, since ∂f

∂x
(x, y) = 2x and ∂f

∂y
(x, y) =

−2y we have ∂f
∂x

(0, 0) = ∂f
∂y

(0, 0) = 0. On the other hand, the Hessian
matrix of f at the critical point is

D2f(0, 0) =

[
2 0
0 −2

]
Therefore, D2f(0, 0) is neither positive definite nor negative definite (it
has positive and negative eigenvalues). So, (0, 0) is a saddle point.

Example 6.8. Consider the function

f(x, y, z) =
x3

3
+
y3

3
+
z3

3
+ xy + xz + yz

with D = R3. The derivative of f is

Df(x, y, z) =
[
x2 + y + z y2 + x+ z z2 + x+ y

]
To find the critical points we have to solve the system

x2 + y + z = 0

y2 + x+ z = 0

z2 + x+ y = 0

Subtracting the 2nd - 1st and 3rd - 1st equations we get an equivalent
system 

x2 + y + z = 0

(y − x)(x+ y − 1) = 0

(z − x)(x+ z − 1) = 0

Now we see that both x+ y and x+ z cannot be equal to 1, otherwise
using the second and third equations of the 1st system we get y2+1 = 0
and z2 + 1 = 0 which has no real solutions. Thus, only x = y = z is
possible. In this case, we get x2 + 2x = 0, so x = 0 or x = −2. We
conclude that f has critical points (0, 0, 0) and (−2,−2,−2).
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Computing the Hessian matrix we get,

D2f(x, y, z) =

2x 1 1
1 2y 1
1 1 2z


At the critical point (−2,−2,−2) we have

D2f(−2,−2,−2) =

−4 1 1
1 −4 1
1 1 −4


and the leading principal minors are

∣∣−4
∣∣ = −4,

∣∣∣∣−4 1
1 −4

∣∣∣∣ = 15,

∣∣∣∣∣∣
−4 1 1
1 −4 1
1 1 −4

∣∣∣∣∣∣ = −50

This means that−D2f(−2,−2,−2) > 0, that is, D2f(−2,−2,−2) < 0.
So the critical point (−2,−2,−2) is a local maximizer.

Doing the same for the critical point (0, 0, 0) we conclude that the
leading principal minors of the Hessian matrix are 0, −1 and 2. In
this case, neither D2f(0, 0, 0) > 0 nor D2f(0, 0, 0) < 0, so because
det(D2f(0, 0, 0)) 6= 0, we conclude that (0, 0, 0) is a saddle point.

Exercise 29. Classify the critical points of the following functions,
(1) f(x, y, z) = x2 + 2y2 + 3z2 + 2xy + 2xz on R3

(2) f(x, y, z, w) = 20y + 48z + 6w + 8xy − 4x2 − 12z2 − w2 − 4y3

on R4

(3) f(x, y, z) = z log(x2 + y2 + z2) on R3 \ {(0, 0, 0)}

Exercise 30. Consider the following function defined on R2,

f(x, y) = (1 + y)3x2 + y2

Show that f has a unique critical point (x∗, y∗) which is a local mini-
mizer. Is (x∗, y∗) a global minimizer ?

6.3. Convex and concave functions. The function f : D → R is
convex on D if for every x, y ∈ D and every λ ∈]0, 1[,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

If the previous inequality holds for ≥ then f is said to be concave on
D. If the inequality is strict < (resp. >) whenever x 6= y, then f is
strictly convex (resp. concave). Clearly, f is (strictly) convex iff −f
is (strictly) concave.

Example 6.9. The function f(x) = 1 − x2 is strictly concave on R
and g(x) = x2 is strictly convex on R.

Example 6.10. Any linear function f(x) = a1x1 + · · ·+ anxn defined
on D = Rn is both convex and concave on R.
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The following theorem provides a simple characterization of convex
functions in terms of the second derivative.
Theorem 6.11. Characterization of convex (concave) functions Let
D ⊂ Rn be open and convex and f : D → R be of class C2. The
following holds:

• f is convex iff D2f(x) ≥ 0 for every x ∈ D,
• f is concave iff D2f(x) ≤ 0 for every x ∈ D.

Furthermore,
• if D2f(x) > 0 for every x ∈ D, then f is strictly convex,
• if D2f(x) < 0 for every x ∈ D, then f is strictly concave.

Proof. Check bibliography. �

Example 6.12. The function f(x, y, z) = log(xyz) is strictly concave
on R3

+. Indeed,

D2f(x, y, z) =

− 1
x2

0 0
0 − 1

y2
0

0 0 − 1
z2


Clearly, D2f(x, y, z) < 0 for every (x, y, z) ∈ R3

+. Thus, f is strictly
concave.
Proposition 6.13. Let D ⊂ Rn be convex and f : D → R convex
(concave). Then

• Local minimizers (maximizers) are global minimizers (maximiz-
ers),
• if f is strictly convex (concave) and it has a minimizer (maxi-
mizer), then it is unique.

Theorem 6.14 (Necessary and sufficient condition). Let D ⊂ Rn be
open and convex, and f : D → R be differentiable and convex (concave)
function. Then x∗ ∈ D is a local minimizer if and only if x∗ is a critical
point.
Proof. One direction has been proved. To prove the other direction,
suppose that x∗ ∈ D is a critical point and f is convex. The concave
case is analogous. Then

f(x)− f(x∗) ≥ Df(x∗)(x− x∗)
So f(x) ≥ f(x∗) for every x near x∗, so x∗ is a minimizer. �

Exercise 31. Determine if the following functions are (strictly) con-
vex/concave:

(1) f(x, y) = 2x− y − x2 + 2xy − y2 on R2.
(2) f(x, y) = xayb on R2

+ and a+ b ≤ 1 with a, b ≥ 0.
Exercise 32. Find the largest domain D ⊂ R2 on which the following
function is concave,

f(x, y) = x2 − y2 − xy − x3.
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6.4. Equality constraints. Given C2 functions f and gi are defined
in some open subset U ⊂ Rn, the optimization problem with equality
constraints is

maximize (minimize) f(x)

subject to g1(x) = 0

g2(x) = 0

...
gm(x) = 0

This problem has m equality constraints and we assume that m < n.
We denote by g = (g1, . . . , gn) the vector function and we define the
constrain set

D = {x ∈ Rn : g(x) = 0}
So the problem is to find the local optimal points of f on D.

The standard procedure to solve this problem is to define the La-
grangian function

L(x, λ) = f(x) + λ · g(x) = f(x) +
m∑
i=1

λigi(x)

where λ ∈ Rm are the Lagrange multipliers. The following theorem
is due to Lagrange.
Theorem 6.15 (Necessary condition). If x∗ ∈ D is a local optimal
point of f on D and rankDg(x∗) = m, then there is λ∗ ∈ Rm such that
(x∗, λ∗) is a critical point of the Lagrangian, i.e.,{

Df(x∗) +
∑m

i=1 λ
∗
iDgi(x

∗) = 0

g(x∗) = 0

Proof. Check the bibliography. �

The condition rankDg(x∗) = m is called constraint qualification.
The rankA of an m×n matrix A is the maximum number of linearly

independent columns (or rows) of A. We say that A has full rank
whenever rankA = m, i.e., the rows of A are linearly independent, or
equivalently, A has m columns whose determinant is non-zero.
Example 6.16. Consider the function f(x, y) = xy subject to the
constrain x2 + y2 = 2. Let g(x, y) = x2 + y2 − 2 and D = {(x, y) ∈
R2 : g(x, y) = 0}. By the previous theorem, the critical points of the
Lagrangian are candidates for local optimal points of f on D. The
critical points satisfy the equations,

∂f
∂x

+ λ ∂g
∂x

= 0
∂f
∂y

+ λ∂g
∂y

= 0

g(x, y) = 0

⇔


y + 2λx = 0

x+ 2λy = 0

x2 + y2 = 2
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First, we deal with the top two equations. We have y = −2λx, thus
x+2λy = x(1−4λ2) = 0. This implies that either x = 0 or λ = ±1/2. If
x = 0, then y = 0, which is impossible because x2 + y2 = 2. Therefore,
only λ = ±1/2 is possible. To determine x we use the 3rd equation.
Hence,

2 = x2 + y2 = x2 + 4λ2x2 = 2x2

So x = ±1. Summarizing, we have 4 critical points (x∗, y∗, λ∗),

(1,−1, 1/2), (1, 1,−1/2), (−1, 1, 1/2), (−1,−1,−1/2)

Since
Dg(x, y) =

[
2x 2y

]
we have

rankDg(±1,±1) = 1

So, by Theorem 6.15, all critical points of the Lagrangian are candidates
for local optimal points of f on D.

Under convexity assumptions we have the following sufficient condi-
tion.

Theorem 6.17 (Sufficient condition under convexity). If there are
λ∗ ∈ Rm and x∗ ∈ D such that (x∗, λ∗) is a critical point of the La-
grangian and L(λ∗, x) is a convex (concave) function of the variable x,
then x∗ is a minimizer (maximizer) of f on D.

Example 6.18. Consider f(x, y, z) = x + 2z on the constraint set
D defined by the constraints x + y + z = 1 and x2 + y2 + z = 7/4.
Both the objective function and the constraints are convex. In order
to determine the local optimal points of f on D we have to compute
the critical points of the associated Lagrangian,

L(x, y, z, λ1, λ2) = x+ 2z + λ1(x+ y + z − 1) + λ2(x
2 + y2 + z − 7/4)

The critical points are solutions of the system

1 + λ1 + 2λ2x = 0

λ1 + 2λ2y = 0

2 + λ1 + λ2 = 0

x+ y + z = 1

x2 + y2 + z = 7/4

From the 3rd equation we get λ1 = −2− λ2. Substituting into the 1st
and 2nd equations we obtain

x =
1 + λ2

2λ2
, y =

2 + λ2
2λ2

From the 4th equation we get,

z = 1− x− y = − 3

2λ2
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Thus, by the 5th equation we get

(1 + λ2)
2

4λ22
+

(2 + λ2)
2

4λ22
− 6λ2

4λ22
=

7

4

which simplifies after cancellations, λ22 = 1. So λ2 = ±1. This means
that L has two critical points

(x, y, z, λ1, λ2) = (1, 3/2,−3/2,−3, 1)

and
(x, y, z, λ1, λ2) = (0,−1/2, 3/2,−1,−1)

Notice that

L(x, y, z,−3, 1) = −11

4
− 2x− 3y + x2 + y2

is convex and

L(x, y, z,−1,−1) =
11

4
− y − x2 − y2

is concave. Therefore, (1, 3/2,−3/2) is a minimizer and (0,−1/2, 3/2)
a maximizer of f on D.

Exercise 33. Use Theorem 6.17 to solve the following optimization
problems:

(1)

maximize 2x+ y

subject to x2 + y2 = 1

(2)

minimize x2y2

subject to (1/x)2 + (1/y)2 = 1

(3)

maximize x+ 4y + z

subject to x+ 2y + 3z = 0

x2 + y2 + z2 = 42

(4)

minimize x+ 4z

subject to x− y + z = 2

x2 + y2 = 1

If the Lagrangian is not convex or concave there is another criterion
to determine if the critical points of L give local optimal points.
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6.4.1. Second-order condition. Define the following determinants

Br(x, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 ∂g1(x)
∂x1

· · · ∂g1(x)
∂xr... . . . ...

...
...

0 · · · 0 ∂gm(x)
∂x1

· · · ∂gm(x)
∂xr

∂g1(x)
∂x1

· · · ∂gm(x)
∂x1

∂2L(x,λ)

∂x21
· · · ∂2L(x,λ)

∂x1∂xr
...

...
... . . . ...

∂g1(x)
∂xr

· · · ∂gm(x)
∂xr

∂2L(x,λ)
∂xr∂x1

· · · ∂2L(x,λ)
∂x2r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, r = m+1, . . . , n

Then we have the following sufficient criterion for a critical point of
L to be a local optimal point.

Theorem 6.19. Let (x∗, λ∗) be a critical point of the Lagrangian sat-
isfying the constraint qualification condition, i.e., Dg(x∗) has full rank.
Then

(1) If (−1)mBr(x
∗, λ∗) > 0 for every r = m+ 1, . . . , n, then x∗ is a

local minimizer of f on D.
(2) If (−1)rBr(x

∗, λ∗) > 0 for every r = m+ 1, . . . , n, then x∗ is a
local maximizer of f on D.

Example 6.20. Consider the optimization problem

maximize (minimize) x2 + y2

subject to 4x2 + 2y2 = 4

The critical points of the Lagrangian L(x, y, λ) = x2 + y2 + λ(4x2 +
2y2 − 4) satisfy 

2x+ 8λx = 0

2y + 4λy = 0

4x2 + 2y2 = 4

Taking the 1st and 2nd equations we get 2x(1+4λ) = 0 and 2y(1+2λ) =
0. Thus either x or y have to be zero. If x = 0, then λ = −1/2 and
y = ±

√
2 by the 3rd equation. If y = 0, then λ = −1/4 and x = ±1

again by the 3rd equation. So we have 4 critical points,

(0,±
√

2,−1/2), (±1, 0,−1/4)

Since
Dg(x, y) =

[
8x 4y

]
we conclude that both Dg(0,±

√
2) and Dg(±1, 0) have full rank, thus

all critical points satisfy the constraint qualification condition. Now,

B2(x, y, λ) =

∣∣∣∣∣∣
0 8x 4y

8x 2 + 8λ 0
4y 0 2 + 4λ

∣∣∣∣∣∣
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Hence,

B2(0,±
√

2,−1/2) = 64 and B2(±1, 0,−1/4) = −64

So (0,±
√

2) are local maximizers and (±1, 0) are local minimizers.

Exercise 34. Use Theorem 6.19 to find the local optimal points of f
on D where:

(1)

f(x, y) = log(xy)

D = {(x, y) ∈ R2 : (1/x)2 + (1/y)2 = 1}
(2)

f(x, y) = x+ y

D = {(x, y) ∈ R2 : xy = 16}
(3)

f(x, y, z) = x2 − z2

D = {(x, y, z) ∈ R3 : 2x+ z = a, x− y = b}

6.5. Inequality constraints. Given C2 functions f and hi are defined
in some open subset U ⊂ Rn, the optimization problem with inequality
constraints is

maximize (minimize) f(x)

subject to h1(x) ≥ 0

h2(x) ≥ 0

...
h`(x) ≥ 0

This problem has ` inequality constraints. We denote by h = (h1, . . . , h`)
the vector function and we define the constrain set

D = {x ∈ Rn : h(x) ≥ 0}
So the problem is to find the local optimal points of f on D.

Given x ∈ D we say that hi is an active constraint for x if hi(x) =
0. If all vectors Dhi(x), corresponding to those hi which are active for
x, are linearly independent, then we say that x satisfies the constraint
qualification. We are now ready to state the necessary conditions for
the existence of a local optimal point.

Theorem 6.21 (Kuhn-Tucker necessary conditions). Suppose that x∗ ∈
D is a local optimal point of f on D and x∗ satisfies the constraint qual-
ification. Then there is λ∗ = (λ∗1, . . . , λ

∗
`) ∈ R` such that

(1) Df(x∗) +
∑`

i=1 λ
∗
iDhi(x

∗) = 0
(2) λ∗ihi(x∗) = 0 for every i = 1, . . . , `
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The conditions (1) and (2) are called the Kuhn-Tucker conditions.
They become sufficient under convexity assumptions.

Theorem 6.22 (Sufficient condition). Suppose that (x∗, λ∗) satisfies
Df(x∗) +

∑`
i=1 λ

∗
iDhi(x

∗) = 0

λ∗ihi(x
∗) = 0, ∀ i = 1, . . . , `

hi(x
∗) ≥ 0, ∀ i = 1, . . . , `

If λ∗ ≥ 0 (λ∗ ≤ 0) and L(x, λ∗) = f(x) +
∑

i λ
∗
ihi(x) is a concave

(convex) function of the variable x, then x∗ is a maximizer (minimizer)
of f on D.

Example 6.23. Consider the problem

maximize x2 − y
subject to x2 + y2 ≤ 1

The Kuhn-Tucker conditions are
2x− 2λx = 0

−1− 2λy = 0

λ(1− x2 − y2) = 0

x2 + y2 ≤ 1

By the 2nd and 3rd equations we conclude that λ 6= 0. So x2 + y2 = 1.
The 1st equation gives x(1 − λ) = 0. Thus, either x = 0 or λ = 1. If
x = 0, then y = ±1 and λ = ∓1/2. However, if λ = 1, then y = −1/2
and x = ±

√
3/2. Therefore, we have 4 solutions (x∗, y∗, λ∗)

(0, 1,−1/2) (0,−1, 1/2) (
√

3/2,−1/2, 1) (−
√

3/2,−1/2, 1)

Since

L(x, y, 1) = f(x, y) + h(x, y)

= x2 − y + (1− x2 − y2)
= 1− y − y2

we conclude that L(x, y, 1) is a concave function of (x, y). So (±
√

3/2,−1/2)
are maximizers of f on D and solve the desired optimization problem.

Exercise 35. Use Theorem 6.22 to solve the following optimization
problems:

(1)

maximize x2 + 2y

subject to x2 + y2 ≤ 5

y ≥ 0
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(2)

maximize
1

2
x− y

subject to x+ e−x + z2 ≤ y

x ≥ 0

(3)

minimize 2x2 + 3y2

subject to x+ 2y ≤ 11

x ≥ 0

y ≥ 0

Exercise 36. A firm has L units of labour available and produces 3
goods whose values per unit of output are a, b and c, respectively.
Producing x, y and z units of the goods requires αx2, βy2 and γz2

units of labour, respectively. Here a, b, c, α, β, γ > 0. Determine the
number of units of the goods that maximize the value of the output
that can be produced with no more than L units of labour.

6.6. Mixed constrains. Let f , g1, . . . , gm and h1, . . . , h` be C2 func-
tions defined in some open set U ⊂ Rn. We consider the following
optimization problem with mixed constrains

maximize (minimize) f(x)

subject to g1(x) = 0

...
gm(x) = 0

h1(x) ≥ 0

...
h`(x) ≥ 0

There are m equality constraints and ` inequality constraints. As be-
fore, let D denote the set of points x which satisfy the equality and
inequality constraints. Then we say hi is an active constraint for x ∈ D
if hi(x) = 0. Moreover, x ∈ D satisfies the constraint qualification if
all vectors Dg1(x), . . . , Dgm(x) and Dhi(x), corresponding to those hi
which are active for x, are linearly independent.

Theorem 6.24 (Necessary condition). Suppose that x∗ ∈ D is a local
optimal point of f on D and x∗ satisfies the constraint qualification.
Then there are λ∗ = (λ∗1, . . . , λ

∗
m) ∈ Rm and µ∗ = (µ∗1, . . . , µ

∗
`) ∈ R`

such that
(1) Df(x∗) +

∑m
i=1 λ

∗
iDgi(x

∗) +
∑`

i=1 µ
∗
iDhi(x

∗) = 0
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(2) µ∗ihi(x∗) = 0 for every i = 1, . . . , `

This theorem generalizes the theorem of Kuhn-Tucker as it includes
equality and inequality constraints. The procedure to find the candi-
dates for local optimal points is the same as in the previous optimiza-
tion problems. First, one finds all solutions (x∗, λ∗, µ∗) of the system

Df(x) +
∑m

i=1 λiDgi(x) +
∑`

i=1 µiDhi(x) = 0

µihi(x) = 0, i = 1, . . . , `

gi(x) = 0, i = 1, . . . ,m

hi(x) ≥ 0, i = 1, . . . , `

Then we may apply the sufficient conditions of Theorem 6.17 and The-
orem 6.22. See the following example.

Example 6.25. Consider the problem of finding the rectangle with
maximum area and perimeter equal to 4. We can formalize the problem
as follows

maximize xy
subject to x+ y = 2

x ≥ 0

y ≥ 0

Of course, only solutions with positive x and y are meaningful. We
have to solve the system 

y − λ+ µ1 = 0

x− λ+ µ2 = 0

µ1x = 0

λ2y = 0

x+ y = 2

x ≥ 0

y ≥ 0

We have 4 cases, corresponding to µ1 and µ2 being or not equal to zero:
• Let µ1 = µ2 = 0. Then λ = x = y and λ = 1.
• Let µ1 = 0 and µ2 6= 0. Then y = 0 which implies that x = 2,
λ = 0 and µ2 = −2.
• Let µ1 6= 0 and µ2 = 0. Then x = 0 which implies that y = 2,
λ = 0 and µ1 = −2.
• Let µ1 6= 0 and µ2 6= 0. Then x = y = 0. But x + y = 2 which
is impossible.

So we have 3 solutions. However, only the solution (x, y, λ, µ1, µ2) =
(1, 1, 1, 0, 0) is meaningful. So, the square with sides equal 1 is the
solution to the problem.
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7. Scalar Differential equations

The most familiar differential equation is
dx

dt
= ax

where a ∈ R is a constant and x = x(t) is an unknown real-valued
function of the real variable t ∈ R. It is common to say that t represents
time. In the left-hand-side of the equation we have dx

dt
which means

the derivative of the function x(t) with respect to t. We shall also
use the equivalent notations x′ and ẋ to represent the derivative. The
differential equation tell us that the derivative x′(t) equals ax(t) for
every t. In order to solve the equation we have to find such function
x(t). A solution to the equation is

(7.1) x(t) = ceat

where c ∈ R is any constant. In fact,

x′(t) = aceat = ax(t)

so it verifies the differential equation. Moreover, all solutions of the
differential equation are of type (7.1). In fact, if u(t) is any other
solution of the differential equation, i.e., du

dt
= au, then

d

dt
(u(t)e−at) = u′(t)e−at + u(t)(−ae−at)

= au(t)e−at − au(t)e−at

= 0

So u(t)e−at has to be equal to a constant c for all t, since it has zero
derivative. This means that u(t) = ceat, which shows that the differ-
ential equation has essentially a unique solution given by (7.1). The
solution (7.1) is called a general solution.

Now we develop the theory of scalar ordinary differential equations
(ODE). Let F (t, x0, . . . , xn−1) be a function taking real values. A
scalar ODE is an equation of the form

x(n) = F (t, x, x′, x′′, . . . , x(n−1))

where x(i) = dix
dti

denotes the i-th derivative of x. By convention x(0) =
x. The differential equation is called scalar because x(t) takes real
values (1 dimensional). Any function x(t) that solves the equation is
called a solution.

Now we introduce some terminology in order to classify the scalar
ODEs. Whenever F does not depend on t, the scalar ODE is called
autonomous. The highest order of the derivative in the equation is
called the order of the ODE. For instance,

(7.2) x′ = ax, x′ + et = 2x, x′ = x(1− x)
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are first order scalar ODEs and
(7.3) x′′ + x′ + x = 1, x′′ + etx2 = 0

are second order scalar ODES. The 2nd equations in (7.2) and (7.3)
are non-autonomous. All the others are autonomous.

A scalar ODE is called linear if it has the form
(7.4) x(n) + a1(t)x

(n−1) + · · ·+ an(t)x = b(t)

where ai(t) and b(t) are real-valued functions of t. For instance, in
examples (7.2) the 1st and 2nd equations are linear but the 3rd is
non-linear. In examples (7.3), the 1st equation is linear but the 2nd
non-linear.

When b(t) is equal to zero in (7.4) we say that the linear scalar ODE
is homogeneous.

Exercise 37. Classify the following scalar ODEs:
(1) x′ = −3x+ 4 + et

(2) x′′ + 4tx′ − 3(1− t2)x = 0
(3) x′ + 3tx = ex

7.1. Initial value problem. In many cases (and also applications)
we will be interested in finding solutions to scalar first order ODEs,

x′ = f(t, x)

which have a prescribed value x0 at some instant of time t0. The
problem of finding such solution is called the initial value problem12,

x′ = f(t, x) with x(t0) = x0.

Example 7.1. In the simple ODE x′ = ax the general solution is
x(t) = ceat. Now consider the initial value problem

x′ = ax, x(0) = x0

The initial condition x(0) = x0 will set the value of the constant c.
Indeed, taking the general solution we see that x(0) = ce0 = c. So the
only solution that satisfies the initial condition is x(t) = x0e

at. This is
called a particular solution.

7.2. First order linear ODEs. Any first order linear ODE is of the
form
(7.5) x′ + a(t)x = b(t)

where a(t) and b(t) are given functions. In the following we present
a method to solve the differential equation based on the integrating
factor,

α(t) = e
∫
a(t) dt

where
∫
a(t) dt denotes a primitive of a(t), i.e., any function u(t) such

that u′(t) = α(t) for every t.
12IVP for short
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Multiplying the integrating factor on both sides of the equation (7.5)
we get

α(t)x′(t) + a(t)α(t)x(t) = α(t)b(t)

Now notice that α′(t) = a(t)α(t). Then

α(t)x′(t) + α′(t)x(t) = α(t)b(t)

But (α(t)x(t))′ = α(t)x′(t) + α′(t)x(t). Thus (α(t)x(t))′ = α(t)b(t)
which implies that

(7.6) x(t) =
1

α(t)

(∫
α(t)b(t) dt+ c

)
where c ∈ R is any constant.

Example 7.2. Consider the autonomous first order linear ODE

x′ + ax = b

where a and b are constants. Clearly, if a = 0, then the solution is

x(t) = bt+ c

where c is a constant. Now suppose that a 6= 0. Then the integrating
factor is

α(t) = e
∫
a dt = eat

Applying formula (7.6) we get

x(t) = e−at
(∫

eatb dt+ c

)
= e−at

(
b

a
eat + c

)
=
b

a
+ e−atc

So, the general solution is

x(t) =

{
bt+ c a = 0
b
a

+ e−atc a 6= 0

If we consider the IVP

x′ + ax = b, x(0) = x0

then, the initial condition x(0) = x0 sets the value of the constant
c = x0 if a = 0, and c = x0 − b/a otherwise. So, the solution is

x(t) =

{
bt+ x0 a = 0
b
a

+ e−at
(
x0 − b

a

)
a 6= 0

Exercise 38. Find the general solution of
(1) x′ + 2x = 8
(2) x′ + 3x = et

(3) x′ + 2tx = e−t
2
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(4) x′ + 2tx = 4t

Exercise 39. For each 1st order linear ODE of Exercise 38 solve the
IVP with the initial condition

(1) x(0) = 0
(2) x(0) = −1
(3) x(0) = 1
(4) x(0) = −2

Exercise 40. Consider the following model of economic growth in a
developing country,

X(t) = σK(t), K ′(t) = αX(t) +H(t)

where X(t) is the total domestic product per year, K(t) the capital
stock, H(t) the net inflow of foreign investment per year, all measured
at time instant t. Assume that H(t) = H0e

µt.
(1) Derive a differential equation for K(t) and find the solution

given that K(0) = K0.
(2) If the size of the population N(t) = N0e

ρt, compute x(t) =
X(t)/N(t) which is the domestic product per capita.

(3) Assuming that µ = ρ and ρ > ασ compute limt→+∞ x(t).

7.3. Separation of variables. In the following we shall present a
method to solve scalar ODEs whose variables x and t can be sepa-
rated. A scalar ODE has separated variables if it can be written in
the form
(7.7) x′ = g(t)f(x)

Clearly, any autonomous scalar ODE
x′ = f(x)

has separated variables. Other examples of scalar ODEs with separated
variables are

x′ = −2tx2, x′x = ex+t
√

1 + t2

However, not every scalar ODE has separated values. For instance,
x′ = t2 + x, x′ = tx+ 1

have no separated variables.
Let us now consider the IVP

x′ = g(t)f(x), x(t0) = x0.

If f(x0) = 0, then x(t) = x0 solves the IVP. Indeed,
x′(t) = (x0)

′ = 0 = g(t)f(x0) = g(t)f(x).

So suppose that f(x0) 6= 0. Then f(x) 6= 0 for every x close to x0.
Thus, we may write the equation (7.7) as

x′(t)

f(x(t))
= g(t)
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for every t close to t0. Integrating both sides of the equation we get∫ t

t0

x′(s)

f(x(s))
ds =

∫ t

t0

g(s) ds

Making the variable substitution u = x(s) we get du = x′(s) ds and

∫ x(t)

x0

1

f(u)
du =

∫ t

t0

g(s) ds

The previous equation gives a way to compute the solution of the IVP.
Define the functions

F (z) =

∫ z

x0

1

f(u)
du and G(t) =

∫ t

t0

g(s) ds

We have the following method to compute x(t):

(1) Find a primitive of 1/f(u) and used it to calculate the function
F (z)

(2) Find a primitive of g(s) and used it to calculate the function
G(t)

(3) Solve the equation F (x(t)) = G(t) to find x(t).

Example 7.3. Consider the logistic equation

x′ = µx
(

1− x

K

)
, x(0) = x0

where µ,K > 0 and 0 < x0 < K. The ODE is autonomous, so it has
separated variables. In this case g(t) = µ and f(x) = x(1− x/K). To
solve this IVP we apply the method above.

(1) First we compute a primitive of 1/f(u) = 1
u(1−u/K)

. Writing13,

1

u(1− u/K)
=

1

u
+

1

K − u

13In general, the following fraction decomposition is very useful

1

(x− a)(x− b)
=

1

a− b
1

x− a
+

1

b− a
1

x− b
, a 6= b
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we see that

F (z) =

∫ z

x0

1

u(1− u/K)
du

=

∫ z

x0

1

u
du+

∫ z

x0

1

K − u
du

= log u

∣∣∣∣z
x0

+ (− log(K − u))

∣∣∣∣z
x0

= log z − log x0 − log(K − z) + log(K − x0)

= log

(
(K − x0)z
x0(K − z)

)
(2) A primitive of g(s) = µ is µs, hence

G(t) =

∫ t

0

g(s) ds = µs

∣∣∣∣t
0

= µt

(3) Now we solve F (x(t)) = G(t), that is

log

(
(K − x0)x(t)

x0(K − x(t))

)
= µt

Taking exponential we get
(K − x0)x(t)

x0(K − x(t))
= eµt

So
x(t) =

K

1 + K−x0
x0

e−µt

Example 7.4. Consider the IVP

x′ = −2tx2, x(1) = −1

The equation has separated variables with g(t) = −2t and f(x) = x2.
Applying the method we get

(1)

F (z) =

∫ z

−1

1

u2
du = −1

u

∣∣∣∣z
−1

= −
(

1 +
1

z

)
(2)

G(t) =

∫ t

1

(−2s) ds = −s2
∣∣∣∣t
1

= −t2 + 1

(3) Solving

−
(

1 +
1

x(t)

)
= −t2 + 1

we get

x(t) =
1

t2 − 2
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Exercise 41. Find the solutions of the following IVP
(1) tx′ = (1− t)x with x(1) = 1/e
(2) x′ = t/x with x(

√
2) = 1

(3) x′ = (x− 1)(x+ 1) with x(0) = 0

7.4. Qualitative theory of scalar ODEs. Given a function f taking
real values we are interested in the qualitative behaviour of solution to
autonomous scalar ODEs

(7.8) x′ = f(x), x(0) = x0

Thanks to the following theorem we known that the IVP above has a
solution.

Theorem 7.5. If f is of class C1, then (7.8) has a solution, i.e., there
is ε > 0 and a function x : [−ε, ε] → R such that x′(t) = f(x(t)) and
x(0) = x0. Moreover, the solution is unique.

The uniqueness in the theorem means that if x(t) and y(t) are two
solutions of the IVP (satisfying the same initial condition), then x(t) =
y(t) for every t where both solutions are defined. So different initial
conditions give different solutions of x′ = f(x). Themaximal interval
of existence of x(t), which we denote by Ix0 , is the largest time interval
where the solution x(t) is defined. To stress the dependence of x(t) on
the initial condition x(0) = x0 we write x(t;x0) instead.

Example 7.6. Consider the ODE x′ = −x. The solution is x(t;x0) =
e−tx0 which can be computed as in Example 7.2. The maximal interval
of existence is Ix0 = R =]−∞,+∞[.

Example 7.7. Consider the ODE x′ = x2. Suppose that x0 > 0. The
solution is x(t;x0) = x0/(1 − x0 t) which can be computed using the
method of separation of variables. The maximal interval of existence
is Ix0 = R =]−∞, 1/x0[.

Exercise 42. Determine the maximal interval of existence for the so-
lutions of the following ODEs:

(1) x′ = e−x

(2) x′ = 1
2x

From the uniqueness of solutions we derive the following properties
of the solutions:

(1) x(t;x0) is strictly14 increasing in x0
(2) x(t;x0) is monotone (increasing or decreasing) in t
Among all solutions there is one which plays a special role.

Definition 7.1. We say that x∗ ∈ R is an equilibrium point of f if
f(x∗) = 0.

14if x0 < y0 then x(t;x0) < x(t; y0)
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Clearly, if x∗ is an equilibrium point of f then x(t;x∗) = x∗. In-
deed, x′(t) = (x∗)′ = 0 = f(x∗) = f(x(t)). The solution is called
equilibrium or stationary solution.

The importance of equilibrium points is that they attract all bounded
solutions.

Proposition 7.8. If x(t;x0) is bounded as a function of t, then the
maximal interval of existence Ix0 where the solution is defined is un-
bounded and x(t;x0) converges to an equilibrium point either as t →
+∞ or as t→ −∞.

Equilibrium points can be classified according to the local behaviour
of nearby solutions.

Definition 7.2. We say that an equilibrium point x0 is stable if for
every x0 close to x∗, the solution x(t;x0) stays close to x∗ for every
t ≥ 0. If in addition, limt→+∞ x(t;x0) = x∗ for every x0 close to x∗,
then we call x∗ asymptotically stable. An equilibrium which is not
stable is called unstable.

Example 7.9. Let f(x) = −x. The solutions of x′ = f(x) are

x(t;x0) = e−tx0

Clearly, f has a single equilibrium x∗ = 0. The corresponding equilib-
rium solution is x(t; 0) = 0. It is clear that limt→+∞ x(t;x0) = 0 for
every x0 ∈ R. Thus x∗ = 0 is an asymptotically stable equilibrium
point.

The following criterion is useful to determine if a given equilibrium
point is asymptotically stable.

Theorem 7.10. Suppose that f is of class C1 and x∗ is an equilibrium
point of f . Then

(1) x∗ is asymptotically stable if f ′(x∗) < 0
(2) x∗ is unstable if f ′(x∗) > 0.

Example 7.11. Consider the equation

x′ = x(1− x2)
Clearly, there are 3 equilibrium points: 0,±1. Since f ′(x) = 1 − 3x2

we get f ′(0) = 1 and f ′(±1) = −2. Thus 0 is unstable and ±1 are
asymptotically stable.

Example 7.12. For the equation x′ = x2 we have a single equilibrium
at 0. Since f ′(0) = 0 we cannot apply the criterion in Theorem 7.10.
But a closer analysis shows that if x(t) is close to 0 and x(t) < 0
then x′(t) = (x(t))2 > 0. So the solution tends to increase toward
0, i.e., limt→+∞ x(t) = 0. Otherwise, if x(t) > 0 and close to 0 then
x′(t) = (x(t))2 > 0, so limt→+∞ x(t) = +∞. Hence, 0 is unstable.
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A phase portrait is a geometric representation of the solutions of
the ODE. In scalar ODEs, the phase portrait is 1-dimensional. On the
x-axis a set of initial conditions is represented by a different curve (with
arrows), or point (in the case of equilibrium points). Phase portraits
are very useful in studying the qualitative behaviour of solutions. They
reveal crucial information such as stable/unstable equilibrium points
and the limits of solutions as t→ ±∞.

Example 7.13. Consider the ODE

x′ = x(1− x)

There are two equilibrium points x = 0 and x = 1. The first is unstable
and the second is asymptotically stable. The phase portrait is

Exercise 43. Determine the phase portrait of the follows ODEs and
classify the equilibrium points.

(1) x′ = ax, with a 6= 0
(2) x′ = x− x3
(3) x′ = b+ x with b ∈ R
(4) x′ = (x+ 1)(x+ 2)
(5) x′ = −x+ x3 + λ with λ ∈ R
(6) x′ = 1− sinx

8. Planar Differential Equations

Consider a 2nd order linear ODE with constant coefficients

x′′ + ax′ + bx = 0

If y = x′, then y′ = x′′ = −bx− ax′ = −bx− ay. Thus we get a system
of two differential equations

x′ = y

y′ = −bx− ay

We can write these equations using matrix notation. Let,

X(t) =

(
x(t)
y(t)

)
and A =

(
0 1
−b −a

)
.

Then, the above system of scalar ODEs is equivalent to a planar linear
ODE

X ′ = AX
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Our goal in this section is to solve this type of differential equations.
As in the scalar case, for planar ODEs is common to add an initial
condition X(0) = X0 obtaining an IVP,

(8.1) X ′ = AX, X(0) = X0 =

(
x0
y0

)
where

A =

(
a b
c d

)
For certain matrices, such as A being diagonal (b = c = 0), the above

IVP can be easily solved. Indeed, let A =

(
a 0
0 d

)
. Then X ′ = AX is

x′ = ax

y′ = dy

So the solution is x(t) = eatx0 and y(t) = ebty0 because both equations
are detached. Even if A contains a non-zero element in the top right
conner, we can first find a solution for the y-equation and then solve
the x-equation.

Exercise 44. Find the solution to the IVP assuming that

A =

(
a b
0 d

)
For a general matrix A the equations of the corresponding planar

ODE are not detached, so the above simple procedure cannot be ap-
plied. However, if A can be transformed into a simpler form, then we
may have a chance to solve our problem. Next, we will show how to
transform A into a form that we can solve the IVP.

8.1. Change of variables. Consider the change of variables according
to the relation

(8.2) X(t) = P Y (t)

where P is a 2-by-2 matrix (not depending on t) that has an inverse,
i.e., detP 6= 015 We can easily derive the planar ODE for the new
variable Y . Since Y (t) = P−1X(t) we get

Y ′(t) = P−1X ′(t) = P−1AX(t) = P−1AP Y (t)

15A matrix P =

(
p11 p12
p21 p22

)
has an inverse P−1 if and only if det(P ) = p11p22−

p12p21 6= 0. The inverse is characterized by PP−1 = P−1P = I where I denotes the

2-by-2 identity matrix, i.e., I =

(
1 0
0 1

)
. Here is a simple formula for computing

the inverse
P−1 =

1

det(P )

(
p22 −p12
−p21 p11

)



46 JOSÉ PEDRO GAIVÃO

Let
J = P−1AP

Then the IVP (8.1) is equivalent to

Y ′ = JY, Y (0) = Y0

where Y0 = P−1X0.
Therefore, if J is a matrix as in Exercise 44, then we can solve the

IVP for the variable Y and then use the variable relation (8.2) to obtain
the solution for the original IVP (8.1). Our problem now is to find a
matrix P which gives a matrix J as simple as possible.

8.2. Eigenvalues and eigenvectors. Given a non-zero vector v ∈
R2 we say that v is an eigenvector of A if

Av = λv

for some scalar λ. The constant λ is called an eigenvalue of A. The
pair (λ, v) is called an eigenpair. Clearly, an eigenpair (λ, v) satisfies
(A − λI)v = 0. Since v 6= 0, this means that the matrix A − λI is
not invertible. Therefore, the eigenvalues of A are characterized by the
following equation

det(A− λI) = λ2 − tr(A)λ+ det(A) = 0

where tr(A) is the trace of A, i.e., tr(A) = a + d, the sum of the
diagonal of A. This equation is quadratic in λ and can be solved using
the quadratic formula

λ =
tr(A)

2
±

√(
tr(A)

2

)2

− det(A)

Since there is a choice in the sign, every 2-by-2 matrix A has two
eigenvalues λ1 and λ2 given by the formula above. Depending on the
values of tr(A) and det(A) we distinguish 3 cases:

(I): Real and distinct eigenvalues : λ1 6= λ2 and λ1, λ2 ∈ R. This
happens then (tr(A)/2)2 > det(A).

(II): Equal eigenvalues : λ1 = λ2. This happens when (tr(A)/2)2 =
det(A).

(III): Complex conjugate eigenvalues : λ1 = α+iβ and λ2 = α−iβ
where α, β ∈ R. This happens when (tr(A)/2)2 < det(A).

In the following we show how to compute the eigenvectors of A for
each of the above cases.

8.3. Matrix P . Depending on the type of eigenvalues (according to
the previous cases) we have the following algorithm to compute the
eigenvectors of A.
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(I): Real and distinct eigenvalues : In this case we solve the fol-
lowing equations to find eigenvectors v1 and v2,

Av1 = λ1v1 and Av2 = λ2v2.

Each equation is solvable but has infinitely many solutions, i.e.,
if v1 solves the 1st equation, then αv1 with α ∈ R is also a
solution of the same equation. It is common to choose non-zero
solutions v1 and v2 that have the simplest possible expression.
Then we define the matrix P as having in the 1st column v1
and v2 in the 2nd column, i.e.,

P = (v1|v2)
Because v1 and v2 solve the equations above, we have

AP = PJ where J =

(
λ1 0
0 λ2

)
(II): Equal eigenvalues : Let λ denote the single eigenvalue of A.

We have two cases:
(1) If A is diagonal, i.e., A =

(
λ 0
0 λ

)
, then

v1 =

(
1
0

)
and v2 =

(
0
1

)
are eigenvectors of A. So we set P = (v1|v2), which equals
the identity matrix. Clearly, AP = PJ where J = A.

(2) If A is not diagonal, then we find a 1st eigenvector v1 by
solving

Av1 = λv1

We find a 2nd eigenvector v2 by solving

(A− λI)v2 = v1

Then we define P = (v1|v2). A simple computation shows
that

AP = PJ where J =

(
λ 1
0 λ

)
(III): Complex conjugate eigenvalues : Let λ1 = α+ iβ. We solve

the equation
Av = (α + iβ)v

As before, this equation has infinitely many solutions. How-
ever, because λ1 is complex, v will also be complex, i.e., we can
separate v into real and imaginary parts v = v1 + i v2 where
v1, v2 ∈ R2. Then we set P = (v1|v2). As before, a simple
computation shows that

AP = PJ where J =

(
α β
−β α

)
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Example 8.1. We consider 3 examples:
(I): Suppose that

A =

(
1 3
1 −1

)
Since tr(A) = 0 and det(A) = −4, the eigenvalues are

λ =
tr(A)

2
±

√(
tr(A)

2

)2

− det(A) = ±
√

4 = ±2

So λ1 = 2 and λ2 = −2. First we find an eigenvector v1. The
equation Av1 = 2v1 is equivalent to the system{

x+ 3y = 2x

x− y = 2y

Since both equations are equivalent, we take the 1st and deduce
that x = 3y. So (x, y) = (3y, y) = y(3, 1). This gives v1 =
(3, 1). Similarly, we find v2 by solving the equation Av2 = −2v2.
An eigenvector is v2 = (−1, 1). So

P =

(
3 −1
1 1

)
(II): Suppose that

A =

(
3 0
−2 3

)
Since tr(A) = 6 and det(A) = 9, the eigenvalues are

λ =
tr(A)

2
±

√(
tr(A)

2

)2

− det(A) = 3

Because A is not a diagonal matrix we have to find v1 such that
Av1 = 3v1. So we solve the system{

3x = 3x

−2x+ 3y = 3y

We conclude that x = 0 and y ∈ R. Thus (x, y) = (0, y) =
y(0, 1). This gives v1 = (0, 1). To find v2 we solve the equation
(A− 3I)v2 = v1, which is equivalent to solving the system{

0 = 0

−2x = 1

This gives (x, y) = (−1/2, y) = (−1/2, 0) + y(0, 1). So v2 =
(−1/2, 0) since (0, 1) is already an eigenvector of A. Thus,

P =

(
0 −1/2
1 0

)
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(III): Suppose that

A =

(
2 −1
5 0

)
Since tr(A) = 2 and det(A) = 5, the eigenvalues are

λ =
tr(A)

2
±

√(
tr(A)

2

)2

− det(A) = 1± 2i

To find v1 and v2 we solve the system{
2x− y = (1 + 2i)x

5x = (1 + 2i)y

The equations are equivalent. We pick one, say the 2nd equa-
tion. It gives x = 1+2i

5
y. Separating into real and imaginary

parts we get

(x, y) =

(
1 + 2i

5
y, y

)
= y

(
1

5
, 1

)
+ y

(
2

5
, 0

)
i

So, v1 = (1/5, 1) and v2 = (2/5, 0). Thus

P =

(
1/5 2/5
1 0

)
8.4. Jordan normal forms. In any of the above 3 cases, the matrix
P = (v1|v2) is always invertible, i.e., det(P ) 6= 0. We may write

J = P−1AP

where J is a matrix belonging to one of the following types:

(i)

(
λ1 0
0 λ2

)
(ii)

(
λ 1
0 λ

)
(iii)

(
α β
−β α

)
where λ1, λ2, λ, α, β ∈ R. These 3 types of matrices are called Jordan
normal forms. To summarize the discussion done so far we formulate
the following theorem.

Theorem 8.2 (Jordan Normal Form). Given any 2-by-2 matrix A,
there is an invertible matrix P (consisting of eigenvectors of A) such
that J = P−1AP is a Jordan normal form.

The matrix P is computed using the algorithm described in the pre-
vious subsection. Notice that J and A have the same eigenvalues.
Indeed, this follows from the fact

det(J − λI) = det(P−1AP − λI)

= det(P−1(A− λI)P )

= det(P−1) det(A− λI) det(P )

= det(A− λI)
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Exercise 45. Find the matrix P and determine the Jordan normal
form for the following matrices

(1) A =

(
1 1
1 0

)
(2) A =

(
1 1
0 1

)
(3) A =

(
1 1
−1 3

)
(4) A =

(
1 1
1 −1

)
(5) A =

(
0 −1
1 0

)
(6) A =

(
0 4
−5 4

)
8.5. Solution of IVP in Jordan normal form. Consider the IVP

Y ′ = JY, Y (0) = Y0

where J is a Jordan normal form. Write Y (t) =

(
y1(t)
y2(t)

)
and Y0 =(

y10
y20

)
in coordinates. The general solution of this IVP is the following:

(i): Suppose that J =

(
λ1 0
0 λ2

)
. Then the IVP is equivalent to{

y′1 = λ1y1, y1(0) = y10
y′2 = λ2y2, y2(0) = y20

Thus y1(t) = eλ1ty10 and y2(t) = eλ2ty20 are the solutions to
each scalar ODE. So the solution to the IVP is

Y (t) =

(
eλ1t 0
0 eλ2t

)
Y0

(ii): Suppose that J =

(
λ 1
0 λ

)
. Then the IVP is equivalent to{

y′1 = λy1 + y2, y1(0) = y10

y′2 = λy2, y2(0) = y20

The solution to the 2nd ODE is y2(t) = eλty20. Substituting
into the 1st ODE we get the following differential equation for
y1

y′1 = λy1 + eλty20

The solution can be found using (7.6),

y1(t) = eλty10 + teλty20
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Writing in matrix notation we have the solution to the IVP,

Y (t) = eλt
(

1 t
0 1

)
Y0

(iii): Suppose that J =

(
α β
−β α

)
. Then{

y′1 = αy1 + βy2, y1(0) = y10

y′2 = −βy1 + αy2, y2(0) = y20

Let z(t) = y1(t)− i y2(t). Then

z′ = y′1 − iy′2
= αy1 + βy2 − i(−βy1 + αy2)

= α(y1 − iy2) + β(y2 + iy1)

= α(y1 − iy2) + iβ(y1 − iy2)
= (α + iβ)(y1 − iy2)
= (α + iβ)z

The IVP

z′ = (α + iβ)z, z(0) = y10 − iy20
has solution z(t) = e(α+iβ)t(y10− i y20). Using Euler’s formula16

we get

z(t) = e(α+iβ)t(y10 − i y20)
= eαt(cos(βt) + i sin(βt))(y10 − i y20)
= eαt [cos(βt)y10 + sin(βt)y20 + i(sin(βt)y10 − cos(βt)y20)]

where we have used the fact i2 = −1. Because z(t) = y1(t) −
i y2(t) we conclude that{

y1(t) = eαt (cos(βt)y10 + sin(βt)y20)

y2(t) = eαt (− sin(βt)y10 + cos(βt)y20)

Writing in matrix notation we get

Y (t) = eαt
(

cos(βt) sin(βt)
− sin(βt) cos(βt)

)
Y0

8.6. Solution of IVP. Consider a general IVP

(8.3) X ′ = AX, X(0) = X0

where A is any given 2-by-2 matrix. By Theorem 8.2 there is an in-
vertible matrix P such that J = P−1AP is in Jordan normal form.

16eiθ = cos(θ) + i sin(θ)



52 JOSÉ PEDRO GAIVÃO

Changing variables X = PY , as explained in subsection 8.1, we trans-
form the IVP (8.1) into

Y ′ = JY, Y (0) = Y0

where Y0 = P−1X0. If Y (t) is the solution to the IVP in Jordan normal
form, thenX(t) = PY (t) is the solution to the IVP (8.3). The following
theorem summarizes our discussion.

Theorem 8.3. Let λ1 and λ2 denote the eigenvalues of A. Denote by
P the matrix of eigenvectors of A as in Theorem 8.2. The following
holds:

(i): If A is diagonal or λ1 6= λ2 and real, then (8.3) has solution

X(t) = P

(
eλ1t 0
0 eλ2t

)
P−1X0

(ii): If λ = λ1 = λ2 and A is not diagonal, then (8.3) has solution

X(t) = eλtP

(
1 t
0 1

)
P−1X0

(iii): If λ1 = α + iβ and λ2 = α− iβ, then (8.3) has solution

X(t) = eαtP

(
cos(βt) sin(βt)
− sin(βt) cos(βt)

)
P−1X0

Remark 8.4. The solution X(t) of the IVP (8.3) can be written in a
more compact way

X(t) = eAtX0

where eAt is the exponential17 matrix

eAt =
∞∑
n=0

(At)n

n!
.

We can relate the exponential matrix eAt with eJt in the following way.
Since A = PJP−1 we conclude that

An = (PJP−1)(PJP−1) · · · (PJP−1) = PJnP−1

which gives

eAt =
∞∑
n=0

(At)n

n!
=
∞∑
n=0

P (Jt)nP−1

n!
= P

∞∑
n=0

(Jt)n

n!
P−1 = PeJtP−1.

Thus
X(t) = PeJtP−1X0

17Notice the analogy with the series representation of the exponential function

ex =

∞∑
n=0

xn

n!
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where eJt is one of the three matrices in the theorem above, i.e.,

(8.4) eJt =



(
eλ1t 0

0 eλ2t

)
, if A is of type (I)

eλt

(
1 t

0 1

)
, if A is of type (II)

eαt

(
cos(βt) sin(βt)

− sin(βt) cos(βt)

)
, if A is of type (III)

Exercise 46. Find the solution of X ′ = AX with X(0) = X0 where

(1) A =

(
0 1
1 0

)
(2) A =

(
1 1
−1 0

)
(3) A =

(
−1 0
0 −1

)
(4) A =

(
2 0
0 0

)
(5) A =

(
1 1
−1 3

)
8.7. 2nd order scalar linear ODEs. As we have discussed in the
beginning of Section 8, any 2nd order linear homogeneous ODE with
constant coefficients

(8.5) x′′ + ax′ + bx = 0

can be transformed into a 1st order planar linear ODE

X ′ = AX, A =

(
0 1
−b −a

)
, X(t) =

(
x(t)
x′(t)

)
.

By Theorem 8.3, this system has the solution

X(t) = eAtX0 = PeJtP−1X0

where X0 is a vector of initial conditions. The exponential matrix eJt
is of the three types depending on the eigenvalues of A which can be
obtained by solving the characteristic equation,

λ2 + aλ+ b = 0.

Notice the similarity between the characteristic equation and (8.5).
Therefore, the solution x(t) of (8.5) is obtained by a linear combination,

x(t) = c1w1(t) + c2w2(t), c1, c1 ∈ R
where w1(t) and w2(t) are the functions appearing in (8.4), i.e.,

(i): w1(t) = eλ1t and w2(t) = eλ2t

(ii): w1(t) = eλt and w2(t) = teλt

(iii): w1(t) = eαt cos(βt) and w2(t) = eαt sin(βt)
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Example 8.5. Suppose we want to solve the IPV

x′′ − x′ − 2x = 0, x(0) = 1, x′(0) = 0.

The characteristic equation is λ2 − λ − 2 = 0, from which we obtain
the eigenvalues λ1 = 2 and λ2 = −1. Thus, the solution of the IVP is
of the form

x(t) = c1e
2t + c2e

−t.

Taking into account the initial conditions we determine the values of
c1 and c2,{
x(0) = 1

x′(0)) = 0
⇔

{
c1 + c2 = 1

2c1 − c2 = 0
⇔

{
c1 + c2 = 1

2c1 − c2 = 0
⇔

{
c1 = 1

3

c2 = 2
3

Hence,

x(t) =
1

3
e2t +

2

3
e−t

Exercise 47. Solve the IVPs:
(1) x′′ = 4x, with x(0) = 2 and x′(0) = −1.
(2) x′′ + x = 0 with x(0) = 0 and x′(0) = 1.
(3) x′′ − 2x′ + x = 0 with x(0) = 1 and x′(0) = 1.

8.8. Solution of non-homogeneous IVP. Consider the non-homogeneous
IVP,

X ′(t) = AX(t) + b(t), X(0) = X0

where b(t) is a 2 × 1 vector-valued function depending on time. This
problem has a unique solutionX(t). To derive the exact formula for the
solution, we write X(t) = eAtZ(t) and deduce a differential equation
for Z(t). Notice that

X ′(t) = AeAtZ(t) + eAtZ ′(t) = AX(t) + eAtZ ′(t).

But X ′(t) = AX(t)+b(t), so we get b(t) = eAtZ ′(t), which implies that
Z ′(t) = e−Atb(t) since (eAt)−1 = e−At. By the fundamental theorem of
calculus we get

Z(t) = X0 +

∫ t

0

e−Asb(s) ds.

Concluding, the non-homogeneous IVP has the solution

X(t) = eAt
(
X0 +

∫ t

0

e−Asb(s) ds

)
.

Exercise 48. Solve the following IVPs

(1)

{
x′ = y + e−2t,

y′ = x+ 1,
x(0) = 1, y(0) = 2

(2) x′′ + x′ − 6x = 2 with x(0) = −1 and x′(0) = 1.
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8.9. Phase portraits. As introduced in scalar ODEs, the phase por-
trait of a planar ODE is a geometric representation of the solutions. In
the planar case, the phase portrait is 2-dimensional and two axis are
required. On the (x, y)-plane, a set of initial conditions is represented
by a different curve (with arrows), or point (in the case of equilib-
rium points). As pointed out before, phase portraits are very useful in
studying the qualitative behaviour of solutions.

Among the solutions of X ′ = AX, the equilibria are the most simple.

We say thatX∗ ∈ R2 is an equilibrium point if AX∗ =

(
0
0

)
. Clearly,

the origin of the plane X∗ =

(
0
0

)
is equilibrium point. The proof of

following proposition is left as an exercise.

Proposition 8.6. The origin is the unique equilibrium point if and
only if det(A) 6= 0. Moreover,

(1) if the real part of the eigenvalues is negative, then the origin is
asymptotically stable.

(2) if the real part of the eigenvalues is positive, then the origin is
unstable.

Example 8.7. As an example, suppose that

A =

(
2 0
0 0

)
Then every point X∗ =

(
0
y

)
with y ∈ R is an equilibrium point. So

in this case there are infinitely many equilibrium points. Notice that
det(A) = 0.

In the following we sketch several phase portraits for each IVP in
Jordan normal form,

(8.6) X ′ = JX, X(0) = X0 =

(
x0
y0

)
where J is of type (i)-(iii).

(i): Consider the Jordan normal form

J =

(
λ1 0
0 λ2

)
The solution to the IVP is

x(t) = eλ1tx0

y(t) = eλ2ty0

Depending on the signs of the eigenvalues we have the following
phase portraits depicted in Figures 1 and 2.
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Figure 1. The left phase portrait has λ1 < 0 < λ2
and is called a saddle. The middle phase portrait has
0 < λ2 < λ1 and is called a source. The right phase
portrait has λ2 < λ1 < 0 and is called a sink.

Figure 2. The left phase portrait has λ1 = λ2 < 0 and
the right phase portrait has λ1 = λ2 > 0. The 1st is a
sink and the 2nd a source.

(ii): Consider the Jordan normal form

J =

(
λ 1
0 λ

)
The solution to the IVP is

x(t) = eλtx0 + teλty0

y(t) = eλty0

Depending on the sign of λ we have the following phase portraits
depicted in Figure 3.

(iii): Consider the Jordan normal form

J =

(
α β
−β α

)
The solution to the IVP is

x(t) = eαt cos(βt)x0 + eαt sin(βt)y0

y(t) = −eαt sin(βt)x0 + eαt cos(βt)y0
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Figure 3. The left phase portrait has λ > 0 and right
has λ < 0. The 1st is called an unstable node and the
2nd a stable node.

Figure 4. In all phase portraits β > 0. The left phase
portrait has α > 0 and is an unstable focus, the middle
phase portrait has α < 0 and is a stable focus, and
finally the right phase portrait has α = 0 and is a center.
Notice that the center is stable but no asymptotically
stable. For β < 0 the rotation around the origin becomes
anticlockwise.

Depending on the sign of α and β we have the following phase
portraits depicted in Figure 4.

8.10. Transformation of the phase portrait. If the matrix A is
not in a Jordan normal form, then the phase portrait of the associated
IVP can be obtained using the matrix P . Let us show how to sketch
the phase portrait of a general IVP through an example. Consider the
IVP

X ′ = AX, X(0) = X0

where

A =

(
0 1
1 0

)
The matrix A is not in Jordan normal form. To find the normal form
we find the eigenvalues of A,

λ1 = 1, λ2 = −1
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The Jordan normal form of A is

J =

(
1 0
0 −1

)
Then we find the associated eigenvectors and construct the matrix P

P =

(
1 1
1 −1

)
In the Y -plane, the IVP is Y ′ = JY, Y (0) = Y0 and its phase portrait
is depicted in Figure 5. To determine the phase portrait in the X-plane
we see how P transforms the axis of the Y -plane. Using X = PY we
find that (

1
1

)
= P

(
1
0

)
and

(
1
−1

)
= P

(
0
1

)
Thus, the x-axis in the Y -plane is transformed into an axis spanned by
the vector (1, 1) and the y-axis in the Y -plane is transformed into an
axis spanned by the vector (1,−1). In fact, it is not a coincidence that
these are the eigenvectors of A. Then, the phase portrait is sketched
accordingly, see Figure 5.

Figure 5. Phase portrait of the IVP in the Y and X
variables, respectively.

Exercise 49. For each of the following planar ODEs X ′ = AX

(i) A =

(
−8 −5
10 7

)
(ii) A =

(
1/2 −1/2
0 1

)
(iii) A =

(
−1 1
−1 −3

)
(iv) A =

(
4 1
−4 0

)
(v) A =

(
5 4
−10 −7

)
(vi) A =

(
−1 −2
1 1

)
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(1) Find the Jordan normal form of A
(2) Compute the associated matrix P
(3) Compute solution of the associated IVP
(4) Sketch the phase portrait

8.11. Trace-determinant plane. We have seen that for

A =

(
a b
c d

)
the eigenvalues are given by

λ =
tr(A)

2
±

√(
tr(A)

2

)2

− det(A)

So knowing tr(A) and det(A) we can tell immediately which type of
Jordan normal form and which phase portrait (up to a transformation

by P ) are associated with A. The parabola det(A) =
(

tr(A)
2

)2
in the

(tr, det)-plane separates two types of Jordan normal forms:

• det(A) <
(

tr(A)
2

)2
gives real and distinct eigenvalues (type (i)

Jordan normal form)

• det(A) >
(

tr(A)
2

)2
gives complex eigenvalues (type (iii) Jordan

normal form)

If det(A) =
(

tr(A)
2

)2
, then the eigenvalues are repeated and we may be

in a presence of a type (ii) Jordan normal form or a type (i) with equal
eigenvalues.

For each of the above cases we have the following phase portraits.

Let us consider the case det(A) <
(

tr(A)
2

)2
. The others are analysed

similarly. This case breaks down in 3 sub-cases. In fact,
• if det(A) < 0, then the eigenvalues have opposite sign, so we
have a saddle.
• if det(A) > 0 and tr(A) > 0, then the eigenvalues are both
positive, so we have a source.
• if det(A) > 0 and tr(A) < 0, then both eigenvalues are negative,
so we have a sink.

All this analysis is summarized in Figure 6 which is called the trace-
determinant plane. This plane helps to find the type of phase por-
trait and to decide about the stability of the equilibrium just by looking
at the trace and determinant of A.
Exercise 50. Find the solution of the following 2nd order scalar ODEs,

(1) x′′ + bx = 0 with b > 0 (harmonic oscillator)
(2) x′′+ax′+bx = 0 with a, b > 0 (harmonic oscillator with friction)

For each case, discuss the phase portrait in the (x, x′)-plane.
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Figure 6. Trace-determinant plane.
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