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3.1 Infinite divisibility

Characteristic function

Definition

The characteristic function of the random variable X (with values in Rd ), and
distribution µ, is the function φX : Rd → C, defined by

φX (u) = E
[
ei(u·X)

]
=

∫
Rd

ei(u·x)µ(dx), u ∈ Rd .

The characteristic function of a random variable completely characterizes
its distribution, so we can write φX = φµ.

Properties of a characteristic function φ :
1 φ (0) = 1
2 |φ (u)| ≤ 1, ∀u ∈ Rd .
3 φ is uniformly continuous

The moments of a random variable are related to the derivatives at zero
of its characteristic function - see Cont and Tankov, page 30.
Exercise: Prove property 2.
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3.1 Infinite divisibility

Infinite divisibility

Definition

A probability distribution µ on Rd is said to be infinitely divisible if for any
n ∈ N, there exist n i.i.d. random variables Y (n)

1 ,Y (n)
2 , . . . ,Y (n)

n such that
Y (n)

1 + Y (n)
2 + · · ·+ Y (n)

n has distribution µ.

Definition
A r.v. X is infinitely divisible if its distribution µ is infinitely divisible. This
means that

X d
= Y (n)

1 + Y (n)
2 + · · ·+ Y (n)

n ,

where Y (n)
1 , . . . ,Y (n)

n are i.i.d., for each n ∈ N.

Theorem
The distribution µ is infinitely divisible iff for all n ∈ N, exists µn with charact.
func. φn:

φµ (u) = (φn (u))n

for all u ∈ Rd .
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3.1 Infinite divisibility

idea of the proof: Let X be a r.v. with distribution µ and characteristic
function φµ. Taking the i.i.d. Y (n)

1 ,Y (n)
2 , . . . ,Y (n)

n such that

X d
= Y (n)

1 + Y (n)
2 + · · ·+ Y (n)

n , by the independence of the Y (n)
i ,

E
[
eiuX ] =

(
E
[
eiuY (n)

1

])n
= (φn (u))n

,

where φn (u) is the charact. function of Y (n)
1 ,Y (n)

2 , . . . ,Y (n)
n .

Exercise: Let α > 0, β > 0. Show that the gamma-(α, β) distribution

µα,β (dx) =
βα

Γ (α)
xα−1e−βxdx , with x > 0,

with characteristic function
(

1− iu
β

)−α
, is an infinitely-divisible

distribution.
For a table with examples of characteristic functions, see Cont and
Tankov, page 33.
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3.1 Infinite divisibility

Infinite divisibility - Examples

In each example, we will find iid Y (n)
1 , . . . ,Y (n)

n such that

X d
= Y (n)

1 + Y (n)
2 + · · ·+ Y (n)

n .

Example

(Gaussian random variable) Let X be Gaussian random variable, with density:

f (x) =
1

σ
√

2π
exp

(
− (x −m)2

2σ2

)
, x ∈ Rd .

X ∼ N
(
m, σ2

)
.

One can show that

φX (u) = exp

(
imu − 1

2
σ2u2

)
.
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3.1 Infinite divisibility

Infinite divisibility - Examples

Example

(continued) Therefore:

(φX (u))
1
n = exp

(
i
m
n

u − 1
2
σ2

n
u2
)
.

and X is inf. divis. with X d
= Y (n)

1 + Y (n)
2 + · · ·+ Y (n)

n and

Y (n)
j ∼ N

(
m
n
,
σ2

n

)
.
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3.1 Infinite divisibility

Infinite divisibility - Examples

Example

(Poisson r.v.) Let d = 1 and X : Ω→ N0 with X ∼ Po (λ), i.e.

P (X = n) =
λn

n!
e−λ.

It is well known that E [X ] = Var [X ] = λ and it is easy to verify that

φX (u) = exp
[
λ
(
eiu − 1

)]
.

Therefore

(φX (u))
1
n = exp

[
λ

n
(
eiu − 1

)]
.

and X is inf. divis. with X d
= Y (n)

1 + Y (n)
2 + · · ·+ Y (n)

n and

Y (n)
j ∼ Po

(
λ

n

)
.
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3.1 Infinite divisibility

Example

(Compound Poisson r.v.) Let {Z (n) ,n ∈ N} be a sequence of iid r.v. with law
µZ . Let N ∼ Po (λ) and independent of the Z (n)′ s. Define

X = Z (1) + Z (2) + · · ·+ Z (N) =
N∑

n=0

Z (n).

Let us prove that, for each u ∈ Rd ,

φX (u) = exp

[∫
Rd

(
ei(u,y) − 1

)
λµZ (dy)

]
. (1)

φX (u) = E
[
ei(u,X)

]
=
∞∑

n=0

E
[
ei(u,Z (1)+Z (2)+···+Z (N))|N = n

]
P [N = n]

=
∞∑

n=0

E
[
ei(u,Z (1)+Z (2)+···+Z (n))

] λn

n!
e−λ = e−λ

∞∑
n=0

(λφZ (u))n

n!

= exp [λ (φZ (u)− 1)] .
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3.1 Infinite divisibility

Infinite divisibility - Examples

Example

(Continued) Therefore, with φZ (u) =
∫
Rd ei(u,y)µZ (dy), we obtain (1).

We denote the Compound Poisson by X ∼ Po (λ, µZ ). We have

(φX (u))
1
n = exp

[
λ

n
(φZ (u)− 1)

]
and X is inf. divis. with X d

= Y (n)
1 + Y (n)

2 + · · ·+ Y (n)
n and

Y (n)
j ∼ Po

(
λ

n
, µZ

)
.

Exercise: Let d = 1. Show that if X ∼ Po (λ) then
φX (u) = exp

[
λ
(
eiu − 1

)]
.
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3.2 The Lévy measure

The Lévy measure

Definition

Let ν be a Borel measure defined on Rd − {0}. We say that ν is a Lévy
measure if ∫

Rd−{0}

(
|x |2 ∧ 1

)
ν (dx) <∞ (2)

Note that ε2 ≤ |x |2 ∧ 1 when 0 < ε ≤ 1 and |x | ≥ ε. Therefore, by (2), we
have that

ν
[
(−ε, ε)c]

<∞, for all ε > 0.
Note: Condition (2) is equivalent to∫

Rd−{0}

|x |2

1 + |x |2
ν (dx) <∞.

Note: one can assume that ν ({0}) = 0 and then ν is defined on Rd .
Exercise: Show that ν

[
(−ε, ε)c]

<∞, for all ε > 0.
Exercise: Show that Condition (2) is equivalent to∫
Rd−{0}

|x|2

1+|x|2 ν (dx) <∞.
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3.3 The Lévy Khintchine formula

Lévy-Khintchine formula

Theorem

(Lévy-Khintchine): A distribution µ on Rd is infinitely divisible if exists a vector
b ∈ Rd , a d × d positive definite symmetric matrix A and a Lévy measure ν on
Rd − {0} such that, for all u ∈ Rd ,

φµ (u) = exp

{
i (b,u)− 1

2
(u,Au) +

+

∫
Rd−{0}

[
ei(u,x) − 1− i (u, x) 1|x|<1 (x)

]
ν (dx)

}
. (3)

Conversely, any mapping of the form (3) is the characteristic function of an inf.
divis. probability measure on Rd .
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3.3 The Lévy Khintchine formula

Lévy-Khintchine formula

(b,A, ν) are the characteristics of the inf. divis. distribution µ.
η := log (φµ) is the Lévy symbol or characteristic exponent or Lévy
exponent:

η (u) = i (b,u)− 1
2

(u,Au)+

∫
Rd−{0}

[
ei(u,x) − 1− i (u, x) 1|x|<1 (x)

]
ν (dx) .

We will not prove the first part of the theorem (difficult, but it can be
proved as a by product of the Lévy-Itô decomposition - to be discussed
later)
We prove the second part.
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3.3 The Lévy Khintchine formula

Proof (2nd part)

We need to prove that the r.h.s of (3) is a characteristic function.
i) Let {U (n) ,n ∈ N} ⊂ Rd be a sequence of Borel sets such that
U (n)↘ 0 and define

φn (u) = exp

{
i

(
b −

∫
U(n)c∩{x :|x|<1}

xν (dx) ,u

)
− 1

2
(u,Au) +

+

∫
U(n)c

(
ei(u,x) − 1

)
ν (dx)

}
.

ii) Clearly, φn is the distribution of a sum of a Normal dist. with an
independent compound Poisson dist. Therefore, it is infinit. divis.
iii) Clearly,

φµ (u) = lim
n→∞

φn (u) .
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3.3 The Lévy Khintchine formula

Proof (continued)
iv) To prove that φµ is a charac. func., use Lévy’s continuity theorem
(Applebaum, p. 18) and we only need to prove that ψµ (u) is continuous at 0:

ψµ (u) =

∫
Rd−{0}

[
ei(u,x) − 1− i (u, x) 1|x|<1 (x)

]
ν (dx)

=

∫
|x|<1

(
ei(u,x) − 1− i (u, x)

)
ν (dx) +

+

∫
|x|≥1

(
ei(u,x) − 1

)
ν (dx) .

v) By Taylor’s theorem, the Cauchy-Schwarz inequality and dominated
convergence:

|ψµ (u)| ≤ 1
2

∫
|x|<1

|(u, x)|2 ν (dx) +

∫
|x|≥1

∣∣∣ei(u,x) − 1
∣∣∣ ν (dx)

≤ |u|
2

2

∫
|x|<1

|x |2 ν (dx) +

∫
|x|≥1

∣∣∣ei(u,x) − 1
∣∣∣ ν (dx)→ 0 as u → 0.

vi) It is now easy to verify directly that µ is infin. divis. �
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3.3 The Lévy Khintchine formula

Remarks

Gaussian case: b = m (mean), A =covariance matrix, ν = 0.
Poisson case: b = 0, A = 0, ν = λδ1

Compound Poisson case: b = 0, A = 0, ν = λµ, λ > 0 and µ a probab.
measure on Rd

João Guerra (ISEG, Universidade de Lisboa) Lévy processes and applications - Part 2 14 / 21



16

3.4 Stable random variables

Stable random variables

The set of stable distributions is an important subclass of the set of inf.
divis. distributions
Let d = 1 and {Yn,n ∈ N} be a sequence of iid r.v. We consider the
general central limit problem. Define the rescaled partial sums sequence:

Sn =
Y1 + · · ·+ Yn − bn

σn
.

where {bn,n ∈ N}: sequence of real numbers; {σn,n ∈ N}: sequence of
positive numbers.
Problem: When exists a r.v. X such that

lim
n→∞

P (Sn ≤ x) = lim
n→∞

P (X ≤ x) ? (4)

In that case Sn converges in distribution to X .
Usual central limit theorem: if bn = nm, σn =

√
nσ. Then X ∼ N (0,1).
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3.4 Stable random variables

Stable Random variables

A r.v. is said to be stable if it arises as a limit as in (4).
This is equivalent to:

Definition

A r.v. X is said to be stable if exist real valued sequences {cn,n ∈ N} ,
{dn,n ∈ N} with each cn > 0, such that

X1 + · · ·+ Xn
d
= cnX + dn, (5)

where X1, . . . ,Xn are independent copies of X . In particular, it is strictly stable
if each dn = 0.

In fact, it can be proved that if X is stable then σn = σn
1
α with 0 < α ≤ 2.

The parameter α is called the index of stability.
(5) is equivalent to

φX (u)n = eiudnφX (cnu) .

All stable random variables are infinitely divisible (trivial consequence of
(5)).
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3.4 Stable random variables

Stable Random variables

Theorem
If X is a stable r.v. then:

1 when α = 2, X ∼ N (b,A)

2 when α 6= 2, A = 0 and

ν (dx) =

{
c1

x1+α dx if x > 0
c2
|x|1+α dx if x < 0. , where c1, c2 ≥ 0 and c1 + c2 > 0.

Proof can be found in the Book of Sato, p. 80.
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3.4 Stable random variables

Stable Random variables

Theorem
A r.v. X is stable if and only if exist σ > 0, −1 ≤ β ≤ 1 and µ ∈ R such that

1 when α = 2,

φX (u) = exp

(
iµu − 1

2
σ2u2

)
;

2 when α 6= 1,2

φX (u) = exp
(

iµu − σα |u|α
[
1− iβsgn (u) tan

(πα
2

)])
3 when α = 1,

φX (u) = exp

(
iµu − σ |u|

[
1 + iβ

2
π

sgn (u) log (|u|)
])

Proof can be found in Sato, p. 86.
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3.4 Stable random variables

Stable Random variables

E
[
X 2
]
<∞ if and only if α = 2 (only if X is Gaussian).

E [|X |] <∞ if and only if 1 < α ≤ 2.
All stable r.v. X have densities fX . In general, can be expressed in series
form, but in 3 cases, we have a closed form.
Normal distribution: α = 2 and X ∼ N

(
µ, σ2

)
.

Cauchy distribution: α = 1, β = 0, fX (x) = σ

π[(x−µ)2+σ2]
.

Lévy distribution: α = 1
2 , β = 1,

fX (x) =
( σ

2π

) 1
2 1

(x − µ)
3
2

exp

[
σ

−2 (x − µ)

]
for x > µ.
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3.4 Stable random variables

Stable Random variables

Exercise: Let X and Y be independent standard normal random variables
(with mean 0). Show that Z has a Cauchy distribution, where Z = X/Y if
Y 6= 0 and Z = 0 if Y = 0.
Remark: if X is stable and symmetric then

φX (u) = exp (−ρα |u|α) for all 0 < α ≤ 2.

where ρ = σ for 0 < α < 2 and ρ = σ√
2

when α = 2.

Important feature of stable laws: when α 6= 2 the decay of the tails is
polynomial (slow decay =⇒ "heavy tails") -(if α = 2 the decay is
exponential):

P [X > x ] ∼ e−
1
2 x2

√
2πx

as x →∞ if α = 2,

lim
x→+∞

xαP [X > x ] ∼ Cα
1 + β

2
σα if α 6= 2, with Cα > 1,

lim
x→−∞

xαP [X < −x ] ∼ Cα
1− β

2
σα if α 6= 2, with Cα > 1.
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3.4 Stable random variables
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