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3.5 Lévy Processes - Definition

Lévy Processes

Definition

Let X = (X (t); t ≥ 0) be a stochastic process. We say that X has independent
increments if for each n ∈ N and each sequence 0 ≤ t1 < t2 < . . . < tn+1 <∞,
the random variables (X (tj+1)− X (tj ); 1 ≤ j ≤ n) are independent and X has

stationary increments if X (tj+1)− X (tj )
d
= X (tj+1 − tj )− X (0).

Definition
We say that X is a Lévy process if
(1) X (0) = 0 (a.s),
(2) X has independent and stationary increments,
(3) X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0,

lim
t→s

P(|X (t)− X (s)| > a) = 0.
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3.6 Lévy processes - Basic properties

Lévy Processes

Conditions (1) and (2) imply that (3) is equivalent to lim
t↘0

P(|X (t)| > a) = 0.

The sample paths (trajectories) X are the maps t → X (t) (ω) from R+ to
Rd for each ω ∈ Ω.

Proposition

If X is a Levy process, then X (t) is infinitely divisible for each t ≥ 0.

Proof: For each n ∈ N, X (t) = Y (n)
1 (t) + · · ·+ Y (n)

n (t), where

Y (n)
j (t) = X

(
jt
n

)
− X

(
(j−1)t

n

)
. By condition (2), these Y (n)

j (t)′s are iid r.v. and
therefore, X (t) is infinitely divisible. �
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3.6 Lévy processes - Basic properties

Lévy Processes

Theorem
If X is a Lévy process, then

φX(t) (u) = etη(u),

for each u ∈ Rd , where η is the characteristic exponent (or Lévy symbol) of
X (1).
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3.6 Lévy processes - Basic properties

L-K formula for Lévy Processes

Exercise: Prove that if X is stochastically continuous , then the map
t → φX(t) (u) is continuous for each u ∈ Rd (Hint: see Applebaum, pages
43-44).
L-K formula for a Lévy Process X = (X (t); t ≥ 0):

φX(t) (u) = E
[
ei(u,X(t))

]
= exp

{
t
[
i (b,u)− 1

2
(u,Au) +

+

∫
Rd−{0}

[
ei(u,x) − 1− i (u, x) 1|x|<1 (x)

]
ν (dx)

]}
, (1)

for each t ≥ 0 and u ∈ Rd . The characteristics (b,A, ν) are the
characteristics of X (1).
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3.6 Lévy processes - Basic properties

Lévy processes - Brownian motion

A standard Brownian motion in Rd is a Lévy process B for which
(1) B (t) ∼ N (0, tI).
(2) B has continuous sample paths.
From (1) we obtain

φB(t) (u) = exp

{
−1

2
t |u|2

}
.
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3.6 Lévy processes - Basic properties

Lévy processes - Brownian motion

Simulated path of standard Brownian motion:
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3.6 Lévy processes - Basic properties

Lévy processes - Brownian motion

Given a non-negative definite symmetric d × d matrix, let σ be the square
root of A (in the sense: σσT = A) with σ a d ×m matrix. Let b ∈ Rd and
let B be a standard Brownian motion in Rm.
The process C defined by

C (t) = bt + σB (t) (2)

is a Lévy process that satisfies C (t) ∼ N (tb, tA). Moreover, C is also a
Gaussian process (all finite dimensional distributions are Gaussian).
The process C is called Brownian motion with drift. The characteristic
exponent (or Lévy symbol) of C is

ηC (u) = i (b,u)− 1
2

(u,Au) .

A Lévy process has continuous sample paths if and only if it is of the form
(2).
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3.6 Lévy processes - Basic properties

Lévy processes - Poisson Process

N (t) ∼ Po (λt) is a process taking values in N0:

P [N (t) = n] =
(λt)n

n!
e−λt .

Let us define the non-negative r.v. {T (n) ,n ∈ N0} (waiting times),
T (0) = 0,

T (n) = inf {t ≥ 0 : N (t) = n} .

The r.v. T (n) has a gamma distribution and the inter-arrival times
T (n)− T (n − 1) are iid with exponential distribution (with mean 1/λ).

Compensated Poisson process: Ñ =
(

Ñ (t) , t ≥ 0
)

where

Ñ (t) = N (t)− λt . Note: E
[
Ñ (t)

]
= 0 and E

[(
Ñ (t)

)2
]

= λt .
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3.6 Lévy processes - Basic properties

Lévy processes - Poisson Process
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3.6 Lévy processes - Basic properties

Lévy processes - Compound Poisson Process

Sequence of iid r.v. {Z (n) ,n ∈ N} with values in Rd with law µZ . Let N
be a Poisson process with intensity λ and independent of the Z (n)′ s.
Compound Poisson process

Y (t) =

N(t)∑
n=1

Z (n) ,

and Y (t) ∼ π (λt , µZ ).
The characteristic exponent is

ηY (u) =

∫
Rd

(
ei(u,x) − 1

)
λµZ (dx) .

The sample paths of Y are piecewise constant with jumps at times T (n),
but now the jump sizes are random and the jump at T (n) can be any
value in the range of the r.v. Z (n).
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3.6 Lévy processes - Basic properties

Lévy processes - Compound Poisson Process
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3.7 Stable processes

Lévy processes - Stable Lévy processes

A stable Lévy process is a Lévy process X with characteristic exponent (
σ > 0, −1 ≤ β ≤ 1 and µ ∈ R) (each X (t) is a stable random variable):

Theorem
1 when α = 2,

ηX (u) = iµu − 1
2
σ2u2;

2 when α 6= 1,2

ηX (u) = iµu − σα |u|α
[
1− iβsgn (u) tan

(πα
2

)]
3 when α = 1,

ηX (u) = iµu − σ |u|
[
1 + iβ

2
π

sgn (u) log (|u|)
]
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3.7 Stable processes

Lévy processes - Stable Lévy processes

Important case (rotationally invariant stable Lévy processes):

ηX (u) = −σα |u|α , 0 < α ≤ 2.

Why are these process important? they are self-similar!
A process Y = (Y (t) , t ≥ 0) is self-similar with Hurst index H > 0 if
(Y (at) , t ≥ 0) and

(
aHY (t) , t ≥ 0

)
have the same finite dimensional

distributions for all a ≥ 0.
By examining the characteristic functions, we can prove that a rotationally
invariant stable Lévy process is self-similar with H = 1/α.
It can be proved that a Lévy process X is self-similar if and only if each
X (t) is strictly stable.
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3.8 Subordinators

Lévy processes - Subordinators

A subordinator is a one-dimensional Lévy process wich is increasing a.s.
Subordinator≈ random model of time evolution: If T = (T (t) , t ≥ 0) is a
subordinator then T (t) ≥ 0 a.s. and T (t1) ≤ T (t2) a.s. if t1 ≤ t2.

Theorem
If T is a subordinator then its charact. exponent has the form

ηT (u) = i (bu) +

∫
(0,∞)

(
eiux − 1

)
λ (dx) , (3)

where b ≥ 0, and the Lévy measure λ satisfies: λ (−∞,0) = 0 and∫
(0,∞)

(x ∧ 1)λ (dx) <∞.
Conversely, any mapping η : R→ C of the form (3) is the charact. exponent of
a subordinator.

(b, λ) are called the characteristics of the subordinator T .
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3.8 Subordinators

Lévy processes - Subordinators

For each t ≥ 0, the map u → E
[
eiuT (t)

]
can be analytically continued to

the region {iu,u > 0} and we obtain (Laplace transform of the
distribution):

E
[
e−uT (t)

]
= e−tψ(u),

where
ψ (u) = −η (iu) = bu +

∫
(0,∞)

(
1− e−xu)λ (dx) . (4)

ψ is called the Laplace exponent of the distribution.
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3.8 Subordinators

Subordinators - Poisson case

Poisson processes are subordinators

Compound Poisson processes are subordinators if and only if the Z (n)′ s
are positive r.v.
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3.8 Subordinators

Subordinators -stable subordinators

It can be proved (using the usual calculus) that (for 0 < α < 1 and u ≥ 0)

uα =
α

Γ (1− α)

∫ ∞
0

(
1− e−ux) dx

x1+α
.

By (4) and the characteristics of a stable Lévy process, there exists an
α-stable subordinator with Laplace exponent ψ (u) = uα and the
characteristics of T are (0, λ), where λ (dx) = α

Γ(1−α)
dx

x1+α .

When we analytically continue this in order to obtain the Lévy charac.
exponent, we obtain µ = 0, β = 1 and σα = cos (απ/2) .

Exercise: Show that there exists an α-stable subordinator with Laplace
exponent ψ (u) = uα and the characteristics of T are (0, λ), where
λ (dx) = α

Γ(1−α)
dx

x1+α .
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3.8 Subordinators

Subordinators -the Lévy subordinator

The
( 1

2

)
-stable subordinator has a density given by the Lévy distribution

(with µ = 0 and σ = t2

2 ):

fT (t) (s) =

(
t

2
√
π

)
s−

3
2 exp

(
−t2

4s

)
.

It is possible to show directly that

E
[
e−uT (t)

]
=

∫ ∞
0

e−usfT (t) (s) ds = e−tu
1
2 .

This subordinator can be represented by a hitting time of the Bm:

T (t) = inf

{
s > 0 : B (s) =

t√
2

}
. (5)
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3.8 Subordinators

Gamma subordinators

Let T (t) be a Gamma process with parameters a,b > 0 such that T (t)
has a density

fT (t) (x) =
bat

Γ (at)
xat−1e−bx , x ≥ 0.

Using some calculus, we can show that∫ ∞
0

e−ux fT (t) (x) dx = exp

(
−t
∫ ∞

0

(
1− e−ux)ax−1e−bxdx

)
.

Therefore, by (4), T (t) is a subordinator with b = 0 and
λ (dx) = ax−1e−bxdx
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3.8 Subordinators

Simulation of a Gamma subordinator
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3.8 Subordinators

Time change

Important application of subordinators: time change!
Let X be a Lévy process and let T be a subordinator independent of X .
Let

Z (t) = X (T (t)).

Theorem
Z is a Lévy process

Proof: see Applebaum, pags. 56-58

Proposition

ηZ = −ψT ◦ (−ηX ) .
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3.8 Subordinators

Time change

Proof: Let pT (t) be the distribution associated to T (t). Then

E
[
etηZ (t)(u)

]
= E

(
ei(u,Z (t))

)
= E

(
ei(u,X(T (t)))

)
=

∫
E
(

ei(u,X(s))
)

pT (t) (ds)

=

∫
esηX (u)pT (t) (ds)

= E
[
e−(−ηX (u))T (t)

]
= e−tψT (−ηX (u)). �
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3.8 Subordinators

Brownian motion and 2 alpha stable motion

Let T be an α-stable subordinator (with 0 < α < 1) and X be a Brownian
motion with covariance A = 2I, independent of T . Then

ψT (s) = sα, ηX (u) = − |u|2

and therefore, by the Proposition,

ηZ (u) = − |u|2α

and Z is a 2α stable process.
If d = 1 and T is the Lévy subordinator, then Z is the Cauchy process
and each Z (t) has a symmetric Cauchy distribution with µ = 0 and σ = 1.
Moreover, by (5), the Cauchy process can be constructed from two
indepedent Brownian motions.
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3.8 Subordinators

The variance gamma process

Let Z (t) = B(T (t)), where T is a gamma subordinator and B is a
Brownian motion. Then, the Lévy process Z is called a variance-gamma
process.
we replace the variance of B by a gamma r.v.
Then, we have

ΦZ (t) (u) = E
[
euiZ (t)

]
=

(
1 +

u2

2b

)−at

,

where a and b are the usual parameters determining the gamma process.
Exercise: Prove this result.
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3.8 Subordinators

The variance gamma process

Manipulating characteristic functions, it is possible to show that:

Z (t) = G(t)− L(t)

where G and L are independent gamma subordinators with parameters√
2b and a (difference of independent "gains" and "losses").

From this representation, it is possible to show that Z (t) has a Lévy
density:

gν (x) =
a

|x |1
(

e
√

2bx1(−∞,0)(x) + e−
√

2bx1(0,∞)(x)
)
,

a > 0.
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3.8 Subordinators

CGMY model

The CGMY model (Carr, Geman, Madan and Yor) is a generalization of
the variance gamma process, with Lévy density:

gν (x) =
a

|x |1+α

(
eb1x1(−∞,0)(x) + e−b2x1(0,∞)(x)

)
,

a > 0, 0 ≤ α < 2, b1,b2 ≥ 0.

When b1 = b2 = 0, we obtain stable Lévy processes.
The exponential dampens the effects of large jumps.
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3.8 Subordinators
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