Information Technology
 Year 2020/2021

Excel

Financial Functions

Financial Functions

Are used to perform financial calculations such as, for example, determining the value of regular terms of a loan or the final value of a deposit

On financial functions in Excel we should use negative values for payments and deposits (as it is money "going out") and positive values for earnings and withdrawals (received money)
http://office.microsoft.com/en-us/excel-help/list-of-worksheet-functions-by-categoryHP010079186.aspx\#BMfinancial_functions

Financial Functions

The parameters for financial functions can be:

- pmt - payment (regular value of the term)
- nper - nr of periods (number of periodic terms)
- rate - interest rate (interest rate on a loan or investment)
- fv - future value (capital value in the last period)
- pv - present value (capital value at baseline)
- type (0 - rent due at the end of the period, 1 - rent due at the beginning of the period)
- value 1; value n (payment, when periodic values differ)
pmt / nper / rate / fv / pv \rightarrow Functions that use the others as parameters

1. INCOME

"In order for a set of capital values to be considered a Rent, it has only to be guaranteed the equidistance between the maturity dates although values can be constant or variable"
(Barroso, Couto and Crespo, 2009)

Future Value
 FV(rate; nper; pmt; pv; type)

We want to calculate the final value of a 5 year financial application, with an annual interest rate of $2,5 \%$, for which a $€ 1.500$ deposit was made at the beginning and there was a $€ 1.000$ yearly rent payed at the end of each year during five years

Type has by default value 0 (rent due at the end of the period)
Final value is $€ 6.953,44$

Future Value

FV(rate; nper; pmt; pv; type)

We want to compute the final value of a deposit of $€ 10,000$ for a period of one year with an annual interest rate of $2,5 \%$

4	A	B	C
1		Notes	
2	Deposit	$-10.000,00 €$	Negative value, because it is a deposit
3	Period	1	year
4	Annual Interest Rate	$2,50 \%$	
5			
6	Final Value	$10.250,00 €$	$=\mathrm{FV}(\mathrm{B} 4 ; B 3 ; ; \mathrm{B} 2 ; 0)$

The function FV allows you to calculate, in the last period, the Accumulated Value of a periodical income of constant terms.

Present Value
 PV(rate; nper; pmt; fv; type)

Manuel bought a car, paying in monthly instalments of $€ 500$, during two years at an annual interest rate of 8%. If Manuel wanted to pay for the car in full at time of purchase, how much would have he paid?
=PV (8\%/12; 24; -500€;; 1)

The same car paid at once would have cost around $€ 11,129$

The PV function allows the calculation of the Present Value of an annuity of constant terms, normal or anticipated.

2. LOANS

> NPER (Number of Periods)
> NPER (rate; pmt; present value; future value; type)

How many monthly payments of $250 €$ will be required to pay a loan of $€ 10,000$, with the annual nominal rate of 10% ?
=NPER (10\%/12;-250;10000)

It will be necessary 48,86 monthly payments $=49$ payments

RATE (Tax)
 RATE (nper; payment; actual value; future value; type)

At which interest rate was a loan of $€ 100,000$ contracted if it was paid in 10 annual installments of $€ \mathbf{1 5 , 0 0 0}$ each?
$=$ RATE $(10 ;-15000 ; 100000)$

The interest rate was 8.14\%

PMT (Payments) PMT (rate; nper; pv; fv; type)

Suppose you want to buy an apartment valued at $€ 150,000$, and you want to settle it in 50 years at an effective annual rate of 5%. What is the value of the monthly payment?
=PMT (5\%/12; 50*12; 150000)

The monthly payment will be $-681.21 €$ (negative because it is a down payment)

> PPMT (Payment on Principal)
> PPMT (rate; per; nper; pv; fv; type)

In the former case, what will be the value of amortization contained in the 1st month of 20th year (229th payment)?
=PPMT (5\%/12; 229; 50*12; 150000)

The amortization is $\mathbf{- 1 4 5 . 0 5 €}$

> IPMT (Interest Payment) IPMT (rate; per; nper; pv; fv; type)

In the former case, what is the interest contained in the 1st month of 20th year (229th payment)?
=IPMT (5\%/12; 229; 50*12; 150000)

The value of the interest rate is $-536.16 €$, ie is = PMT-PPMT

3. EVALUATION OF INVESTMENT PROJECTS

Calculation of Net Present Value (NPV) and Internal Rate of Return (IRR)

Net Present Value
 NPV(rate; value1; value2;...)+value0

The company NOVAERA is planning an investment in a new assembly line, requiring a total investment of $€ 500,000$ and having an estimated duration of 6 years. This investment generates a cash flow of $€ 50,000$ at the end of the 1st year, $€ 70,000$ at the end of 2 and $€ 100,000$ per year between the 3rd and 6th year of operation. Considering the annual effective interest rate of 2.5%, calculate the net present value (NPV) of the investment project

Net Present Value NPV(rate; value1; value2;...)+value 0

The NPV is $€-26,522.38$, which means that the investment will cause a loss, and should not be made

Net Present Value NPV(rate; value1; value2; ...)+value0

Now consider the residual value of the investment is €60,000.

The NPV becomes of $\boldsymbol{€} \mathbf{2 5 , 2 1 5 . 4 3}$

IRR (Internal Rate of Return) IRR (values, guess)

Now calculate the Internal Rate of Return (IRR) of that investment

$=$ IRR (-500.000€; 50.000€;70.000€; 100.000€; 100.000€; 100.000€; 160.000€)

IRR is $\mathbf{3 , 7 8 \%}$

The estimate (guess) is a forecast to the IRR. If omitted, Excel assumes a value of 10%

The values correspond to cash flows equidistant in time

Analysis of Investment Projects

Exercise - Barroso, Couto e Crespo (2009)

The ABCork company is considering making an investment in a new assembly line. The total investment amounts to $€ 207,500$, and will have an estimated life of 8 years. Considering the predictions made about the revenues and operating costs and a discount rate of 6%, perform the financial analysis of this investment project by calculating the IRR and NPV

A	B	C	D	E	F	
1	Year	Investment	Operating Income	Operating Costs	residual value	Cash Flow
2	0	$207.500,00 €$				
3	1		$35.000,00 €$	$12.500,00 €$		$22.500,00 €$
4	2		$49.000,00 €$	$15.600,00 €$		$33.400,00 €$
5	3		$52.000,00 €$	$16.400,00 €$		$35.600,00 €$
6	4		$56.000,00 €$	$17.500,00 €$		$38.500,00 €$
7	5		$64.000,00 €$	$19.000,00 €$		$45.000,00 €$
8	6		$65.000,00 €$	$19.300,00 €$		$45.700,00 €$
9	7		$67.000,00 €$	$19.800,00 €$		$47.200,00 €$
10	8		$69.000,00 €$	$20.500,00 €$	$77.500,00 €$	$\mathbf{1 2 6 . 0 0 0 , 0 0 €}$

$=N P V(6 \% ; 22.500$ € ; 33.400 €; $35.600 € ; 38.500 € ; 45.000 € ; 45.700 € ; 47.200$ €; 126.000) $-207.500 €=80.126 €$
$=$ IRR (- 207.500 €; $22.500 €_{;} 33.400 €_{;} 35.600 €_{;} 38.500 €_{;} 45.000 €_{;} 45.700 €_{;} 47.200 €_{\text {; }}$ 126.000) $=13,08 \%$

