

Information Technology Year 2020/2021

Excel

Financial Functions

ISEG Information Technology Team

IT 2020/21_Excel_1

Financial Functions

Are used to **perform financial calculations** such as, for example, determining the value of regular terms of a loan or the final value of a deposit

On financial functions in Excel we should use **negative values for payments and deposits** (as it is money "going out") and **positive values for earnings and withdrawals** (received money)

> http://office.microsoft.com/en-us/excel-help/list-of-worksheet-functions-by-category-HP010079186.aspx#BMfinancial_functions

Financial Functions

The **parameters for financial functions** can be:

- **pmt payment** (regular value of the term)
- **nper nr of periods** (number of periodic terms)
- rate interest rate (interest rate on a loan or investment)
- fv future value (capital value in the last period)
- **pv present value** (capital value at baseline)
- **type** (0 rent due at the end of the period, 1 rent due at the beginning of the period)
- **value 1; value n** (payment, when periodic values differ)

pmt / nper / rate / fv / pv → Functions that use the others as parameters

1. INCOME

"In order for a **set of capital values** to be considered a **Rent**, it has only to be guaranteed the **equidistance between the maturity dates** although **values can be constant or variable**"

(Barroso, Couto and Crespo, 2009)

Future Value FV(rate; nper; pmt; pv; type)

We want to calculate **the final value of a 5 year financial application,** with an annual interest rate of 2,5%, for which a \in 1.500 deposit was made at the beginning and there was a \in 1.000 yearly rent payed at the end of each year during five years

Future Value FV(rate; nper; pmt; pv; type)

We want to compute **the final value of a deposit** of \in 10,000 for a period of one year with an annual interest rate of 2,5%

	А	В	С
1			Notes
2	Deposit	-10.000,00€	Negative value, because it is a deposit
З	Period	1	year
4	Annual Interest Rate	2,50%	
5			
6	Final Value	10.250,00€	=FV(B4;B3;;B2;0)

The function FV allows you to calculate, in the last period, the Accumulated Value of a periodical income of constant terms.

Present Value PV(rate; nper; pmt; fv; type)

Manuel bought a car, paying in monthly instalments of \in 500, during two years at an annual interest rate of 8%. If Manuel wanted to pay for the car in full at time of purchase, how much would have he paid?

=PV (8%/12; 24; -500€;; 1)

The same car paid at once would have cost around € 11,129

The PV function allows the calculation of the Present Value of an annuity of constant terms, normal or anticipated.

2. LOANS

NPER (Number of Periods) NPER (rate; pmt; present value; future value; type)

How many monthly payments of $250 \in$ will be required to pay a loan of \in 10,000, with the annual nominal rate of 10%?

=NPER (10%/12;-250;10000)

It will be necessary **48,86** monthly payments = 49 payments

RATE (Tax)

RATE (nper; payment; actual value; future value; type)

At which interest rate was a loan of €100,000 contracted if it was paid in 10 annual installments of € 15,000 each?

=RATE (10;-15000;100000)

The interest rate was 8.14%

PMT (Payments) PMT (rate; nper; pv; fv; type)

Suppose you want to buy an apartment valued at €150,000, and you want to settle it in 50 years at an effective annual rate of 5%. What is the value of the monthly payment?

=PMT (5%/12; 50*12; 150000)

The monthly payment will be -681.21€ (negative because it is a down payment)

PPMT (Payment on Principal) PPMT (rate; per; nper; pv; fv; type)

In the former case, what will be the value of **amortization contained in the 1st month of 20th year** (229th payment)?

=PPMT (5%/12; 229; 50*12; 150000)

The amortization is -145.05€

IPMT (Interest Payment) IPMT (rate; per; nper; pv; fv; type)

In the former case, what is the **interest contained in the 1st month of 20th year** (229th payment)?

=IPMT (5%/12; 229; 50*12; 150000)

The value of the interest rate is -536.16€, ie is = PMT-PPMT

3. EVALUATION OF INVESTMENT PROJECTS

Calculation of Net Present Value (NPV) and Internal Rate of Return (IRR)

ISEG Information Technology Team

IT 2020/21_ Excel_14

Net Present Value NPV(rate; value1; value2;...)+value0

The company NOVAERA is planning an **investment in a new assembly line**, requiring a total investment of €500,000 and having an estimated duration of 6 years. This investment generates a cash flow of \in 50,000 at the end of the 1st year, \in 70,000 at the end of 2 and € 100,000 per year between the 3rd and 6th year of operation. Considering the annual effective interest rate of 2.5%, calculate the **net present value (NPV) of the investment** project

ISEG Information Technology Team

Net Present Value NPV(rate; value1; value2;...)+value0

Now consider the residual value of the investment is €60,000.

ISEG Information Technology Team

IRR (Internal Rate of Return) IRR (values, guess)

Now calculate the Internal Rate of Return (IRR) of that investment

=IRR (-500.000€; 50.000€;70.000€; 100.000€; 100.000€; 100.000€; 160.000€)

IRR is **3,78%**

The **estimate (guess)** is a forecast to the IRR. If omitted, Excel assumes a value of 10%

The values correspond to cash flows equidistant in time

Analysis of Investment Projects Exercise - Barroso, Couto e Crespo (2009)

The ABCork company is considering making an investment in a new assembly line. The total investment amounts to \in 207,500, and will have an estimated life of 8 years. Considering the predictions made about the revenues and operating costs and a discount rate of 6%, perform the financial analysis of this investment project by calculating the IRR and NPV

	Α	В	С	D	E	F
1	Year	Investment	Operating Income	Operating Costs	residual value	Cash Flow
2	0	207.500,00€				
3	1		35.000,00€	12.500,00€		22.500,00€
4	2		49.000,00€	15.600,00€		33.400,00€
5	3		52.000,00€	16.400,00€		35.600,00€
6	4		56.000,00€	17.500,00€		38.500,00€
7	5		64.000,00€	19.000,00€		45.000,00€
8	6		65.000,00€	19.300,00€		45.700,00€
9	7		67.000,00€	19.800,00€		47.200,00€
10	8		69.000,00€	20.500,00€	77.500,00€	126.000,00€

=NPV (6%; 22.500 €; 33.400 €; 35.600 €; 38.500 €; 45.000 €; 45.700 €;47.200 €; 126.000) - 207.500 € = 80.126 €

=IRR (- 207.500 €; 22.500 €;33.400 €; 35.600 €; 38.500 €; 45.000 €; 45.700 €;47.200 €; 126.000) = 13,08%

ISEG Information Technology Team

IT 2020/21_ Excel_19