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Basic Regression Analysis with Time Series Data
Time Series vs. Cross Sectional

Time series data has a temporal ordering, unlike cross-section
data
Will need to alter some of our assumptions to take into account
that we no longer have a random sample of individuals.
Instead, we have a sequence of random variables indexed by
time
This type of sequence is known as stochastic (i.e. random)
process or time series process
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Basic Regression Analysis with Time Series Data

Oil prices ($ per barrel)
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Basic Regression Analysis with Time Series Data

Dow Jones Industrial Average
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Basic Regression Analysis with Time Series Data
Examples of Time Series Models

We use the subscript t (e.g. yt ) denote an observation taken at
time t.
A static model relates contemporaneous variables:

yt = β0 + β1zt + ut

Examples:
Static Phillips curve:

inflt = β0 + β1unempt + ut

Murders per 1000 people in a given city:

mrdrtet = β0 + β1convrtet + β2unempt + β3yngmlet + ut

where: mrdrtet is the murder rate, convrtet is the murder conviction
rate,unempt is the unemployment rate and yngmlet is the fraction of
males aged between 18 and 25 (all for year t).
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Basic Regression Analysis with Time Series Data
Examples of Time Series Models

A finite distributed lag (FDL) model allows one or more
variables to affect y with a lag:

yt = α0 + δ0zt + δ1zt�1 + δ2zt�2 + ut

Examples: Effect of taxes on fertility rates:

gfrt = β0 + δ0pet + δ1pet�1 + δ2pet�2 + ut

where: gfrt is the gross fertility rate for year t and pet is the real
value of personal tax exemptions for year t.

More generally, a finite distributed lag model of order q will
include q lags of z.

yt = α0 + δ0zt + δ1zt�1 + ...+ δqzt�q + ut.
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Basic Regression Analysis with Time Series Data
Finite Distributed Lag Models

We can consider:

temporary increases in z
permanent increases in z
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Basic Regression Analysis with Time Series Data
Finite Distributed Lag Models

Consider the model:

yt = α0 + δ0zt + δ1zt�1 + δ2zt�2 + ut

Suppose that z increases temporarily from z� to (z� + ∆) at date t
but then reverts back to z� at date (t+ 1). Then:

yt = α0 + δ0(z� + ∆) + δ1z� + δ2z� + ut.
yt+1 = α0 + δ0z� + δ1(z� + ∆) + δ2z� + ut+1,
yt+2 = α0 + δ0z� + δ1z� + δ2(z� + ∆) + ut+2.

We call δ0 the impact propensity or impact multiplier – it reflects
the immediate change in y when z increases temporarily from z�

to (z� + ∆) at date t, with ∆ = 1
∂yt+s

∂zt
= δs, s = 0, 1, 2�Effect of a transitory shock: If there is a one

time unit change in time t of zt, the dep. variable in time t+ s
will change temporarily by the amount indicated by the
coefficient of the corresponding lag (zt)
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Basic Regression Analysis with Time Series Data
Finite Distributed Lag Models

Graphical illustration of lagged effects
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Basic Regression Analysis with Time Series Data
Finite Distributed Lag Models

Consider the model:

yt = α0 + δ0zt + δ1zt�1 + δ2zt�2 + ut

Suppose that z increases permanently from z� to (z� + ∆) at date t.
Then:

yt = α0 + δ0(z� + ∆) + δ1z� + δ2z� + ut.
yt+1 = α0 + δ0(z� + ∆) + δ1(z� + ∆) + δ2z� + ut+1,
yt+2 = α0 + δ0(z� + ∆) + δ1(z� + ∆) + δ2(z� + ∆) + ut+2.

Notice that:
δ0 yields the immediate change in yt when z� changes
permanently to (z� + ∆) at period t with ∆ = 1
δ0 + δ1 yields the change in yt+1 when z� changes permanently
to (z� + ∆) at period t with ∆ = 1.
δ0 + δ1 + δ2 yields the change in yt+2 when z� changes
permanently to (z� + ∆) at period t with ∆ = 1.
We can call δ� = δ0 + δ1 + δ2 the long-run propensity (LRP) – it
reflects the long-run change in y after a permanent change in z.
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Basic Regression Analysis with Time Series Data
Finite Distributed Lag Models

In the long run and zt = zt�1 = zt�2 = z� + ∆. Define the long
run values as yt = ỹ� and z̃� = z� + ∆ and notice that in the long
run ut = 0. Hence the long run relationship is given by

ỹ� = α0 + δ0z̃� + δ1z̃� + δ2z̃�

= α0 + (δ0 + δ1 + δ2)z̃�

Consider the model:

yt = α0 + δ0zt + δ1zt�1 + ...+ δqzt�q + ut

In this case the long run propensity is given by δ0 + δ1 + ...+ δq
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Basic Regression Analysis with Time Series Data
Finite Distributed Lag Models

Example: Effect of taxes on fertility rates: Data for US (1913-1984):

gfrt = β0 + δ0pet + δ1pet�1 + δ2pet�2 + β1ww2t + β2pillt + ut

where: gfrt is the gross fertility rate for year t and pet is the real value
of personal tax exemptions for year t. ww2t� dummy value that
takes vale 1 from 1941-1945 (World War II), 0 otherwise. pill�
dummy variable equal to 1 from 1963 on, when the birth control pill
was made available for contraception.

cgfrt = 95.87
(3.28)

+ 0.073
(0.126)

pet � 0.0058
(0.1557)

pet�1 + 0.034
(0.126)

pet�2

�22.13
(10.73)

ww2t � 31.30
(3.98)

pillt,

n = 70, R2 = 0.499.
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Basic Regression Analysis with Time Series Data
Assumptions for Unbiasedness

Assumption (TS.1 - linearity in parameters)

The stochastic process f(yt, xt1, xt2, ..., xtk); t = 1, 2, ..., ng follows the linear
model:

yt = β0 + β1xt1 + ...+ βkxtk + ut

Note that some regressors may be lagged values of other
regressors.

Assumption (TS.2 - no perfect collinearity)

No regressor is a constant nor a perfect linear combination of the other
regressors.

Let X denotes the matrix of all regressors for all time-periods, i.e.
X = [xtj; t = 1, ..., n & j = 1; ...; k].

Assumption (TS.3 - zero conditional mean)

E(utjX) = 0, t = 1, 2, . . . , n
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Basic Regression Analysis with Time Series Data
Assumptions for Unbiasedness

If Assumption TS.3 holds we say that the x’s are strictly exogenous
Note that this assumption implies the error term in any given
period is uncorrelated with the explanatory variables in all time
periods.
OLS is unbiased under Assumptions TS.1–TS.3. That is

E(β̂j) = βj, j = 0, ..., k
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Basic Regression Analysis with Time Series Data
Assumptions for Unbiasedness

An alternative (and weaker) assumption, more parallel to the
cross-sectional case, is

E(utjxt) = 0

This implies that the current error term, ut , is uncorrelated with
the current regressors, (xt1, xt2, ..., xtk). That is the x’s are
contemporaneously exogenous.
Contemporaneous exogeneity will only be sufficient for
consistency that is

plim(β̂j) = βj, j = 0, ..., k.

This is fortunate as the current error term, ut , is often correlated
with the future values of the regressors
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Basic Regression Analysis with Time Series Data
Assumptions (continued)

Note we have skipped the assumption of a random sample
The key impact of the random sample assumption is that each ui
is independent of the regressors of other observations in the
sample.
Our strict exogeneity assumption takes care of it in this case
Omitted variable bias can be analyzed in the same manner as in
the cross-section case.
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Basic Regression Analysis with Time Series Data
Variances of OLS Estimators

Just as in the cross-section case, we need to add an assumption of
homoskedasticity in order to be able to derive variances

Assumption (TS.4 - homoskedasticity)

For each t = 1, 2, ..., n :

Var(utjX) = Var(ut) = σ2

Thus, the error variance is independent of all the x’s, and it is
constant over time

Assumption (TS.5 - No Serial Correlation)

For each t; s = 1, 2, ..., n such that t 6= s:

Corr(ut, usjX) = 0

Remark: If Assumption TS.5 does not hold that is if
Corr(ut, usjX) 6= 0 we say that the errors suffer from serial correlation.
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Basic Regression Analysis with Time Series Data
OLS Variances (continued)

Under Assumptions TS.1–TS.5:
the OLS variances in the time-series case are the same as in the
cross-section case.

Var(β̂jjX) =
σ2

SSTj(1� R2
j )

where
SSTj = ∑n

i=1(xtj � x̄)2 and
R2

j is the R-squared from regressing xtj on the other independent
variables.

The estimator of σ2 is the same:

σ̂2 =
SSR

n� k� 1

OLS remains Best Linear Unbiased Estimator (Gauss Markov
Theorem).
With the additional assumption of normal errors (TS.6),
inference is the same as in the cross-sectional case.
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Basic Regression Analysis with Time Series Data
Discussion of assumptions

Example: Static Phillips curve
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Basic Regression Analysis with Time Series Data
Discussion of assumptions

Example: Static Phillips curve

TS.1:A linear relationship might be restrictive, but it should be a
good approximation.

TS.2: Perfect collinearity is not a problem as long as
unemployment varies over time
TS.3: Strict Exogeneity: E(utjunemp1, ..., unempn) = 0 can be
easily violated:

For example, past unemployment shocks may lead to future
demand shocks which may dampen inflation: unemt�1 "�! ut #
For example, an oil price shock means more inflation and may lead
to future increases in unemployment: ut�1 "�! unemt "
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Basic Regression Analysis with Time Series Data
Discussion of assumptions

Example: Static Phillips curve

TS.4. Var(utjunemp1, ..., unempn) = σ2 (homoskedasticity)-
Assumption is violated if monetary policy is more "nervous" in
times of high unemployment
TS.5 Corr(ut, usjunemp1, ..., unempn) = 0, t 6= s - Assumption is
violated if exchange rate influences persist over time (they
cannot be explained by unemployment)
TS.6. utjX � N(0, σ2), - Questionable assumption
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Basic Regression Analysis with Time Series Data
Discussion of assumptions

Example: Effects of inflation and deficits on interest rates

TS.1:A linear relationship might be restrictive, but it should be a
good approximation.
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Basic Regression Analysis with Time Series Data
Discussion of assumptions

Example: Effects of inflation and deficits on interest rates

TS.2:Perfect collinearity will seldomly be a problem in practice.
TS.3: Strict Exogeneity: E(utjinf1, ..., infn, def1, ..., defn) = 0 can be
easily violated:

For example, past deficit spending may boost economic activity,
which in turn may lead to general interest rate rises:
deft�1 "�! ut "
For example, unobserved demand shocks may increase interest
rates and lead to higher inflation in future periods: ut�1 "�! inft "
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Basic Regression Analysis with Time Series Data
Discussion of assumptions

Example: Effects of inflation and deficits on interest rates

TS.4. Var(utjinf1, ..., infn, def1, ..., defn) = σ2 (homoskedasticity)-
Assumption is violated if higher deficits lead to more uncertainty
about state finances and possibly more abrupt rate changes
TS.5 Corr(ut, usjinf1, ..., infn, def1, ..., defn) = 0, t 6= s - Assumption
is violated if business cycle effects persist across years (and they
cannot be completely accounted for by inflation and the
evolution of deficits)
TS.6. utjX � N(0, σ2), - Questionable assumption
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Basic Regression Analysis with Time Series Data
Inference on the long-run propensity

Consider the model:

yt = α0 + δ0zt + δ1zt�1 + δ2zt�2 + ut

Inference on δ� = δ0 + δ1 + δ2. Use the t-test

t =
δ̂0 + δ̂1 + δ̂2 � δ�

se(δ̂0 + δ̂1 + δ̂2)

where se(δ̂0 + δ̂1 + δ̂2) is the standard error of δ̂0 + δ̂1 + δ̂2
Notice that

Var(δ̂0 + δ̂1 + δ̂2) = Var(δ̂0) +Var(δ̂1) +Var(δ̂2)

+2Cov(δ̂0, δ̂1) + 2Cov(δ̂1, δ̂2) + 2Cov(δ̂0, δ̂2)

Hence

se(δ̂0 + δ̂1 + δ̂2)
2 = se(δ̂0)

2 + se(δ̂1)
2 + se(δ̂2)

2

+2s01 + 2s12 + 2s02

where se(δ̂j) is the standard error of δ̂j and sij is an estimator of
Cov(δ̂i, δ̂j).
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Basic Regression Analysis with Time Series Data
Inference on the long-run propensity

Alternative way: Computation of the standard errors of the OLS
estimator of δ�. Notice that δ0 = δ� � δ1 � δ2, substituting this in

yt = α0 + δ0zt + δ1zt�1 + δ2zt�2 + ut

we obtain

yt = α0 + δ�zt + δ1 (zt�1 � zt) + δ2 (zt�2 � zt) + ut.

Hence by running the regression of yt on a intercept, zt, zt�1 � zt
and zt�2 � zt the standard error of the OLS estimator of the slope
of zt is the standard error of the OLS estimator of δ�.
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Basic Regression Analysis with Time Series Data
Inference on the long-run propensity

Example (cont): Effect of taxes on fertility rates: Data for US
(1913-1984):cgfrt = 95.87

(3.28)
+ 0.073
(0.126)

pet � 0.0058
(0.1557)

pet�1 + 0.034
(0.126)

pet�2

�22.13
(10.73)

ww2t � 31.30
(3.98)

pillt,

n = 70, R2 = 0.499.

(Standard errors are in parentheses)
The estimated variance-covariance matrix of the OLS estimator is

Intercept pe pe(1) pe(2) pill ww2
Intercept 10.771

pe 0.093 0.016
pe(1) 0.018 0.011 0.024
pe(2) 0.002 0.003 0.013 0.016

pill 1.529 0.006 0.002 0.030 15.853
ww2 2.642 0.793 0.122 0.810 5.711 115.180

Test the hypothesis that the long-run multiplier of gfr with respect to
pe is 0.05.
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Basic Regression Analysis with Time Series Data
Trending Time Series

Economic time series often have a trend.
Just because 2 series are trending together, we can’t assume that
the relation is causal.
The phenomenon of finding of a relationship between 2 or more
trending variables because each is growing over time is an
example of spurious regression problem.
Often, both will be trending because of other unobserved factors
Even if those factors are unobserved, we can control for them by
directly controlling for the trend
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Basic Regression Analysis with Time Series Data
Trends (continued)

One possibility is a linear trend, which can be modeled as

yt = α0 + α1t+ et,
t = 1, 2, . . .

Ignoring the error term α1 gives the growth of yt in absolute
terms:

∆yt = yt � yt�1 = α1

Another possibility is an exponential trend, which can be
modeled as

log(yt) = α0 + α1t+ et,
t = 1, 2, . . .

Ignoring the error term α1 gives growth in proportional terms

∆ log(yt) = log(yt)� log(yt�1) = α1.

∆ log(yt) ' yt � yt�1

yt�1
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Basic Regression Analysis with Time Series Data
Trends (continued)

Another possibility is a quadratic trend, which can be modeled
as

yt = α0 + α1t+ α2t2 + et,
t = 1, 2, . . .

Notice that
∂yt

∂t
= α1 + 2α2t

so we allow the slope to change with t.
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Basic Regression Analysis with Time Series Data
Trends (continued)
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Basic Regression Analysis with Time Series Data
Trends (continued)
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Basic Regression Analysis with Time Series Data
Trends (continued)
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Basic Regression Analysis with Time Series Data
Trends (continued)

Example: Housing investment and prices
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Basic Regression Analysis with Time Series Data
Trends (continued)

When should a trend be included?

If the dependent variable displays an obvious trending
behaviour
If both the dependent and some independent variables have
trends
If only some of the independent variables have trends; their
effect on the dep. var. may only be visible after a trend has been
substracted
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Basic Regression Analysis with Time Series Data
Detrending

Adding a linear trend term to a regression is the same thing as
using “detrended” series in a regression
Detrending a series involves regressing each variable in the
model on an intercept and the time trend t.
The residuals of this regression form the detrended series.
Basically, the trend has been partialled out.
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Basic Regression Analysis with Time Series Data
Detrending (continued)

An advantage to actually detrending the data (vs. adding a
trend) involves the calculation of goodness of fit.
Time-series regressions tend to have very high R2.
Does this mean that we learn more about factors affecting y from
time series data?
No. The R2 and adjusted R2 can artificially be high when y is
trending.
The R2 from a regression on detrended data better reflects how
well the xt’s explain yt.
No need to include the intercept in the model with detrended
data, but including an intercept affects nothing: the intercept will
be estimated to be zero.
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Basic Regression Analysis with Time Series Data
Trends (continued)

Example: (Estimation of the Phillips curve)

Consider the regression of inflation rate (infl) on unemployment
rate (ur) and a trend. 1959 to 1995 (37 obs.), US data.

cinfl = 1.49974+ 0.4016 ur+ 0.03666 t,

R2 = 0.0736, R̄2 = 0.0191

Consider the regression of the detrended inflation rate (infdet) on
detrended unemployment rate (urdet). 1959 to 1995, US data.

[infdet = 0.4016 urdet

R2 = 0.0301, R̄2 = 0.0301
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Basic Regression Analysis with Time Series Data
Seasonality

Often time-series data exhibits some periodicity, referred to
seasonality.
Example: Beer consumption increases in the Summer.
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Basic Regression Analysis with Time Series Data
Seasonality

Example: industrial production index, cement (ipcem) US data
(1964-1989)
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Basic Regression Analysis with Time Series Data
Seasonality

Seasonality can be dealt with by adding a set of seasonal
dummies

ipcemt = β0 + δ1Jant + δ2Febt + δ3Mart +

δ4Aprt + δ5Mayt + δ6Junt + δ7Jult
+δ8Augt + δ9Sept + δ10Octt + δ11Novt +

β1x1t + ...+ βkxkt + ut.

where Jant Febt Mart Aprt Mayt Junt Augt Sept Octt Novt and
Monthly dummy variables.
As with trends, the series can be seasonally adjusted before
running the regression.
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Basic Regression Analysis with Time Series Data
Seasonality

Running the regression of ipcemt on an intercept and Jant Febt
Mart Aprt Mayt Junt Augt Sept Octt Novt we have

[ipcemt = 0.7025� 0.15679 Jant � 0.07071 Febt + 0.10069 Mart +

0.28953 Aprt + 0.38327 Mayt + 0.51013 Junt

+0.45528 Jult + 0.53523 Augt + 0.48085 Sept

+0.50122 Octt + 0.24739 Novt

n = 312, R2 = 0.8766, R̄2 = 0.8719
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Basic Regression Analysis with Time Series Data
Seasonality

Let Residuals1 be the residuals of the above model. These residuals
can be seen as one possible ways of computing the industrial
production index of cement after removing seasonality (seasonally
adjusted series).
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Basic Regression Analysis with Time Series Data
Seasonality

One could also include a trend in the model.

ipcemt = β0 + δ0t+ δ1Jant + δ2Febt + δ3Mart +

δ4Aprt + δ5Mayt + δ6Junt + δ7Jult
+δ8Augt + δ9Sept + δ10Octt + δ11Novt +

β1x1t + ...+ βkxkt + ut.

[ipcemt = 0.66693+ 0.00024 t� 1556 Jant � 0.06976 Febt + 0.1014Mart +

0.29 Aprt + 0.3835 Mayt + 0.51013 Junt + 0.45504Jult
+0.53476 Augt + 0.48014 Sept + 0.50027 Octt + 0.24763Novt,

n = 312, R2 = 0.8831, R̄2 = 0.8782
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