Instituto Superior de Economia e Gestão
BsC in Economics, Finance and Management

Mathematics II - 1st Semester - 2022/2023

Regular Assessment - 4th of January 2023
Duration: $(120+\varepsilon)$ minutes, $|\varepsilon| \leq 30$

Version C

Name: \qquad
Student ID \#: \qquad

Part I

- Complete the following sentences in order to obtain true propositions. The items are independent from each other.
- There is no need to justify your answers.
(a) (6) If $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear map such that

$$
A(1,0,0)=(5,0,0), \quad A(0,2,0)=(0,-1,0) \quad \text { and } \quad A(0,0,3)=(0,0,3 / 4)
$$

then the eigenvalues of A^{-1} are \qquad and their geometric multiplicities are \qquad respectively.
(b) (4) The quadratic form Q associated to the matrix $\left(\begin{array}{cc}0 & -3 \\ -5 & 2\end{array}\right)$ is given by

$$
Q(x, y)=
$$

\qquad
(c) (5) The (maximal) domain of $f: D_{f} \rightarrow \mathbb{R}$ is the set

$$
D_{f}=\left\{(x, y) \in \mathbb{R}^{2}: y>(x-1)^{2} \wedge(x, y) \neq(1,5)\right\}
$$

One possible analytical expression for f is

$$
f(x, y)=
$$

\qquad
(d) (4) The set of accumulation points of $\left\{\left(\cos (n \pi),\left(\frac{1}{2}\right)^{n}\right), n \in \mathbb{N}\right\} \subset \mathbb{R}^{2}$ is
(e) (5) Consider $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+(y+2)^{2}<4 \wedge x y \neq 0\right\}$. The topological border (frontier) of A is analytically defined by

$$
\partial A=
$$

\qquad
(f) (6) The continuous map $f(x, y)=x^{2}+y^{2}$ has a maximum but not a minimum when restricted to the set

$$
M=\left\{(x, y) \in \mathbb{R}^{2}:\right.
$$

\qquad ..)
\qquad 's Theorem cannot be applied because M is not \qquad
(g) (4) Geometrically, the level curve of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ associated to 2 is a/an
\qquad
(h) (4) If $f(x, y)=\frac{3}{(x-1)^{2}+y^{2}}$ and $g: \mathbb{R} \backslash\{3\} \rightarrow \mathbb{R}$ is the map defined by $g(x)=2+\frac{5}{x-3}$, then

$$
\lim _{(x, y) \rightarrow(0,0)}[g \circ f(x, y)]=\ldots \ldots \ldots
$$

(i) (4) If $u_{n}=($. \qquad .) with $n \in \mathbb{N}$, is a non-constant sequence in \mathbb{R}^{2} and $f(x, y)=\ln x+\cos (y)$, then $\lim _{n \rightarrow+\infty} f\left(u_{n}\right)=3$.
(j) (5) The map $f(x, y)=\sqrt{12 x^{2}+8 y^{2}}$ is positively homegeneous of degree In this case, the Euler identity says that (compute explicitly the derivatives)
(k) (4) If $f(x, y)=x y, x(t)=t^{2}$ and $y(t)=1+t^{3}$, by the Chain rule we get:

$$
\frac{d f}{d t}(t)=
$$

(l) (5) The gradient vector of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $\left(2 x \cos y, 1-x^{2} \sin y\right)$. If $f(x, y)$ does not have constant terms in both components, then $f(1, \pi)=$ \qquad
(m) (4) With respect to the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we know that $\nabla f(3,2)=(0,0)$ and

$$
H_{f}(3,2)=\left(\begin{array}{cc}
\ldots \ldots & 0 \\
0 & \ldots \ldots .
\end{array}\right)
$$

Then, $f(3,2)$ is a local maximum of f.
(n) (3) The point $x=5$ is a saddle-point of the map $f(x)=$ \qquad $x \in \mathbb{R}$.
(o) (3) The differential of order 2 of the map $f(x, y)=e^{3 y}$ at the point $(0,0)$ is given by

$$
D_{2} f(0,0)\left(h_{1}, h_{2}\right)=\ldots \ldots . h_{1}^{2}+\ldots \ldots . h_{1} h_{2}+\ldots \ldots . . h_{2}^{2}
$$

(p) (4) The map $y(x)=\frac{1}{x}, x \in \mathbb{R}^{-}$, is a solution of the IVP $\left\{\begin{array}{l}\dot{y}=\ldots \ldots . \\ y(\ldots \ldots)=-2\end{array}\right.$.
(q) (5) The following equality holds:

$$
\int_{-\infty}^{1} \int_{0}^{1} e^{x+y} \mathrm{dx} \mathrm{dy}=\ldots
$$

(r) (3) The absolute maximum of $f(x, y)=x$ when restricted to the set

$$
M=\left\{(x, y) \in \mathbb{R}^{2}:(x-5)^{2}+y^{2}=\ldots . .\right\}
$$

occurs at $(x, y)=(7, \ldots$.$) . The associated Lagrange multiplier is$ \qquad
(s) (6) The logistic law (associated to a given population of size p that depends on the time $t \geq 0$) states that

$$
p^{\prime}=a p-b p^{2}, \quad a, b \in \mathbb{R}
$$

where a / b may be seen as the \qquad .of the population.
If $p(0)=1000, a=1$ and $b=0.002$, then the solution of the previous differential equation is monotonic
If $a=3, b=0$ and $p(0)=1000$, the solution of the ODE is
where $t \in \mathbb{R}^{+}$.
(t) (6) The graph of the solution of the IVP $\left\{\begin{array}{l}y^{\prime \prime}-4 y=0 \\ y^{\prime}(0)=0 \\ y(0)=2\end{array}\right.$ is

Part II

- Give your answers in exact form. For example, $\frac{\pi}{3}$ is an exact number while 1.047 is a decimal approximation for the same number.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solve a problem, you may get little or no credit for it, even if your answer is correct.

1. For $\alpha \in \mathbb{R} \backslash\{-3,3\}$, consider the following matrix $\mathbf{A}=\left[\begin{array}{ccc}\alpha & 3 & 0 \\ 3 & \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$.
(a) Classify the quadratic form $Q(X)=X^{T} \mathbf{A} X, X \in \mathbb{R}^{3}$, as function of α.
(b) Find the value of α for which $(1,1,0)$ is an eigenvector of \mathbf{A} associated to 1 .
2. Consider the map $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2}(x-y)}{\sqrt{x^{2}+y^{2}}} & \text { if } y>x \\ 0 & \text { if } y \leq x\end{array}\right.$. Show that:
(a) f is continuous in \mathbb{R}^{2}.
(b) f has a global maximum.
(c) if $y>x$ then $x \frac{\partial f}{\partial x}(x, y)+y \frac{\partial f}{\partial y}(x, y)=2 f(x, y)$.
3. Consider the map f defined in \mathbb{R}^{2} as

$$
f(x, y)=x^{3}+y^{3}+x^{3} y^{3}
$$

(a) Compute $f(x, 0), x \in \mathbb{R}$.
(b) Identify and classify the critical points of f (if necessary, use 3(a)).
4. Let $\Omega \subset \mathbb{R}^{2}$ be the triangle defined by the points $(1,0),(2,0)$ and $(1,1)$. Compute

$$
\iint_{\Omega} x y \mathrm{dx} \mathrm{dy} .
$$

5. Consider the following IVP (y is a function of x):

$$
\left\{\begin{array}{l}
x^{2} y^{\prime}+x y=x^{3} \\
3 y(1)=4
\end{array}\right.
$$

Write the solution $y(x)$ of the IVP, identifying its maximal domain.

Credits:

I	II.1(a)	II.1(b)	II.2(a)	II.2(b)	II.2(c)	II.3(a)	II.3(b)	II.4	II.5
90	10	10	15	10	10	5	15	15	20

