

Universidade de Lisboa Instituto Superior de Economia e Gestão BsC in Economics, Finance and Management

Mathematics II – 1st Semester - 2022/2023

Appeal Assessment - 2nd of February 2023

Duration: $(120 + \varepsilon)$ minutes, $|\varepsilon| \le 30$

Version A

Name:

Student ID #:

Part I

- Complete the following sentences in order to obtain true propositions. The items are independent from each other.
- There is no need to justify your answers.

(a) (6) If $A : \mathbb{R}^3 \to \mathbb{R}^3$ is a non-invertible linear map such that

$$A(1,0,0) = (1,0,0)$$
 and $A(0,0,3) = (0,0,3),$

then the eigenvalues of A are The algebraic multiplicity of is 1.

(b) (6) The quadratic form Q associated to the symmetric matrix $\begin{pmatrix} \dots & 3 \\ \dots & \dots \end{pmatrix}$ is given by

 $Q(x,y) = 9x^2 + \dots + xy + y^2,$

which is defined.

(c) (5) The (maximal) domain of $f: D_f \to \mathbb{R}$ is the set

$$D_f = \{ (x, y) \in \mathbb{R}^2 : (x > 0 \land y > 0) \lor (x < 0 \land y < 0) \}.$$

One possible analytical expression for f is

 $f(x,y) = \dots$

(d) (7) With respect to the set

$$\Omega = \{ (x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 \le 3 \} \cup \{ (0, 0) \},\$$

we may conclude that (0,0) is not a/an point of Ω , $int(\Omega) = \{(x,y) \in \mathbb{R}^2 : \dots \},\$ and $\int \int dx$

$$\iint_{\Omega} \quad 1 \quad \mathrm{dy} \ \mathrm{dx} = \dots$$

(e) (4) The continuous map $f(x, y) = x^2 - \sin(xy)$ when restricted to

 $M = \left\{ (x, y) \in \mathbb{R}^2 : \dots \right\}$

has a global maximum and a global minimum. This is a consequence of's Theorem.

- (f) (3) The map $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \dots$ is continuous but not differentiable at x = 2.
- (g) (6) If $f(x,y) = \frac{x^2 y}{x^2 y^2}$ where $x \neq \pm y$, then $\dots = \lim_{(x,y) \to (0,0), y = x^2 + x} f(x,y) \neq \lim_{(x,y) \to (0,0), y = 3x} f(x,y) = \dots,$

which means that f

.....

(h) (4) If $u_n = \left(\left(1 + \frac{1}{n}\right)^n, \sqrt{n} - \sqrt{n-1}\right)$ is a sequence in \mathbb{R}^2 and $f(x, y) = \ln x + 2\cos y$, then $\lim_{n \to +\infty} f(u_n) = \dots$

(i) (5) The map
$$f(x,y) = \ln\left(\frac{(x+y)^2}{xy}\right)$$
 is positively homegeneous of degree

In this case, the *Euler identity* says that (**do not** compute explicitly the derivatives)

.....

(j) (6) If $f(x,y) = x^2 y^3$, $x(t) = te^t$ and $y(t) = 1 + t^2$, by the *Chain rule* we get: $\frac{df}{dt}(t) = \dots$

- (k) (3) With respect to the map $f : \mathbb{R} \to \mathbb{R}$, we know that f'(3) = 0 and f''(3) > 0. Then f(3) is a local of f.
- (l) (4) The following equality holds

$$\int_0^2 \int_0^{x^2} e^{x+3y} \, \mathrm{dy} \, \mathrm{dx} = \int_{\dots}^{\dots} \int_{\dots}^{\dots} e^{x+3y} \, \mathrm{dx} \, \mathrm{dy}.$$

(m) (3) The differential of order 2 of the map $f(x,y) = \sqrt{3}x + 4y$ at the point (0,0) is given by

$$D_2 f(0,0)(h_1,h_2) = \dots h_1^2 + \dots h_1 h_2 + \dots h_2^2$$

(n) (4) The map $y(x) = \cos(x), x \in \mathbb{R}$, is a solution of the IVP

$$\begin{cases} y'' = \dots \\ y(\dots) = \sqrt{2}/2 \\ y'(0) = 0 \end{cases}$$

(o) (3) The absolute maximum of f(x, y) = y when restricted to the set

$$M = \{(x, y) \in \mathbb{R}^2 : (x - 4)^2 + y^2 = \dots\}$$

occurs at $(x, y) = (...., \sqrt{7}).$

(p) (6) The law (associated to a given population of size p that depends on the time $t \ge 0$) states that

$$p' = kp, \qquad k \in \mathbb{R} \text{ (parameter).}$$

If
$$p(0) = 10$$
 and $k = -1$, then $p(10) = \dots$ and $\lim_{t \to +\infty} p(t) = \dots$
(q) (5) The graph of the solution of the IVP $\begin{cases} y' = 3x \\ y(0) = 2 \end{cases}$ is

(y is a function of x)

Part II

- Give your answers in exact form. For example, $\frac{\pi}{3}$ is an exact number while 1.047 is a decimal approximation for the same number.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solve a problem, you may get little or no credit for it, even if your answer is correct.
- 1. For $\alpha \in \mathbb{R} \setminus \{0\}$, consider the following matrix $\mathbf{A} = \begin{bmatrix} 2\alpha & \alpha & \alpha \\ \alpha & 2\alpha & 0 \\ \alpha & 0 & 2\alpha \end{bmatrix}$.
 - (a) Show that, for all $\alpha \neq 0$, the vector (0, 1, -1) is an eigenvector of **A**. It is associated to which eigenvalue?
 - (b) For $\alpha = 1$ and $X \in \mathbb{R}^3$:
 - (i) classify the quadratic form $Q(X) = X^T \mathbf{A} X$.
 - (ii) solve the equation $X^T \mathbf{A} X = 0$.

2. Consider the map
$$f(x,y) = \begin{cases} \frac{2x^2y^2}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- (a) Show that f is continuous in \mathbb{R}^2 .
- (b) Compute the directional derivative of f at (1, 1) along the vector (0, 1).
- 3. Consider the map f defined in \mathbb{R}^2 as

$$f(x,y) = xy \, e^{x+y}$$

- (a) Identify and classify the critical points of f.
- (b) Show that f does not have global extrema (neither maximum nor minimum).

4. Let $\Omega \subset \mathbb{R}^2$ be the region defined by

$$\Omega = \{ (x, y) \in \mathbb{R}^2 : x \ge 0, y \ge x, y \le 2 - x^2 \}.$$

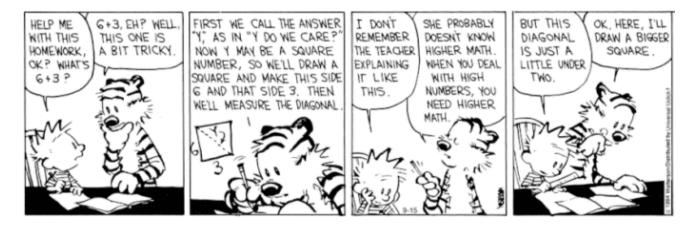
- (a) Draw the set Ω in the plane (x, y).
- (b) Compute $\iint_{\Omega} xy \, dx \, dy$.

.

5. Consider the following IVP (y is a function of x):

$$\left\{ \begin{array}{l} y'' + 2y' + y = x^2 \\ y'(0) = 1 \\ y(0) = 0 \end{array} \right.$$

Write the solution y(x) of the IVP.



Score:

Ι	II.1(a)	II.1(b)	II.2(a)	II.2(b)	II.3(a)	II.3(b)	II.4(a)	II.4(b)	II.5
80	15	10 + 5	15	10	15	15	5	10	20