Artificial Intelligence and Machine Learning

Ivan Yamshchikov

What is intelligence?

Intelligence — ability to **perceive** or **infer information**, and to **retain it as knowledge** to be **applied towards adaptive behaviors** within an environment or context.

• Logic

• Self-awareness

- Learning
- Reasoning
- Problem solving
- Planning

- Emotional knowledge
- Understanding
- Creativity
 - Critical thinking

What is artificial intelligence?

Artificial intelligence (AI) is an **area of computer science** about the design of artificial machines and algorithms that **work and react like humans**.

- Visual perception
- Text and speech recognition
- Natural language processing
- Decision making

S-curve

Mass adoption takes time

What is artificial intelligence. «Weak AI» versus «Strong AI»

Weak/Narrow Al

• One specific task.

 Solution of practical problems by imitating human perception and reasoning

Strong/General AI

Any task that a human being can.

 Science fiction and inspiration for philosophers

https://vas3k.ru/blog/machine_learning/

Deductive vs. inductive learning

Deductive

- Teacher-centered
- From generalisation (rules) to specifics (examples or activities)

Inductive

- Student-centered
- From specifics (examples or activities) to generalisations (rules)

Machine learning paradigms. Supervised, reinforcement and unsupervised learning. (Inductive)

Supervised learning infers a function from labeled training data.

Unsupervised learning infers the patterns within unlabeled datasets.

Reinforcement learning allows intelligent agents to automatically determine the optimal behavior within a specific environment.

Knowledge engineering pros and cons

Pros:

• Ability to represent high-level knowledge in a structured form without large labeled datasets.

Cons:

- High cost of development and support of large knowledge bases.
- Inability of human experts to correctly estimate probabilities.

Machine learning. Most important ML algorithms. (Inductive)

Naïve Bayes

Evolutionary algorithm

Support Vector Machines

Deep Learning

Gradient boosting

Key terms definition

$$ext{Precision} = rac{tp}{tp+fp}$$
 $ext{Recall} = rac{tp}{tp+fn}$

ton

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

$$\mathrm{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

https://en.wikipedia.org/wiki/Precision_and_reca

Naïve Bayes

Main idea

 Strong (naive) independence assumptions between the features

Area of application

• Text and image categorization (such as spam or legitimate, sports or politics, type of document etc.)

Support Vector Machines Main idea

- •Searching for a clear **gap** that is **as wide as possible**.
- Area of application
- Text and Image classification

Trees and ensembles

Ensembles

https://vas3k.ru/blog/machine_learning /

Which tree is overfitted?

Evolutionary algorithm Main idea

•Mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection.

Area of application

•Learning of hyperparameters

Neuron

ANN

Deep learning — a class of machine learning algorithms that use a graph of multiple **layers of nonlinear processing units** for **feature extraction and transformation.** Each successive layer uses the output from the previous layer as input.

Where is ML a gamechanger?

Animalcule to Big Blue Whale Is Gb to Zb

Where do we use AI?

Future is measurable

A REAL PROPERTY OF

AUTOMATION

DEEP DIVE I

CALL CENTERS

Ready to make your next call? 3)÷ E Call type Negotiation 1st caller Follow up https://i2x.ai/

i2x Calling.. \equiv +06:23 12m 31s Do say perfect pleasant call thank you 2 Don't say **CALL CENTERS** problem 2x literally 2x Speaker Ratio Speech Rate Loudness 133 $\langle \rangle$ 86% Words/Min (Ø 120) Perfect Need help? https://i2x.ai/

CALL CENTERS

D	o say			
ſ	3 Said	(
	3 Unsaid	(-	
	he things tha nore of	at you wanted to	say	
	my name is	new product	perfect	
	understand	pleasant call	thank you	
D	on't sav			
_	problem 2x	literally 2x		
	-	literally 2x Speech Rate	Loudness	
	problem 2x		Loudness	
	problem 2x	Speech Rate	Loudness C Perfect	

CALL CENTERS

Speaker Ratio

Ratio of talk time compared to overall conversations

60% of the time you were talking

Speech Rate

Your talking speed, measured by words per minute

Your speed

Your average

60%

40%

133 words/min

146 words/min

Loudness

The volume of your voice throughout the conversation

https://i2x.ai/

DEEP DIVE II

AGRICULTURE

CATTLE CARE

Video analytics for dairy farm operations

Cattle Care

Group Management

- \$19.4 mln for food
- 5,500 cow-hours a day in a headlock
- 200 robo-hours a day

Problems

- 3 to 6 hours a day the cow has no food
- \$0.6 mln a year of food waste
- Robots break and there is not alert systems

Solution

- Web-camera feeding control
- Head-lock notification
- Robot-breaks notifications

