Artificial Intelligence and Machine Learning

Ivan Yamshchikov

Let's talk business

Non-parametric models

- No functional form for f (\cdot) is assumed
- The structure of the model is defined by the data
- May accurately fit a wider range of possible shapes for f (\cdot)

Disadvantage: a larger number of observations is required to obtain an accurate estimate of $f(\cdot)$; lower interpretability

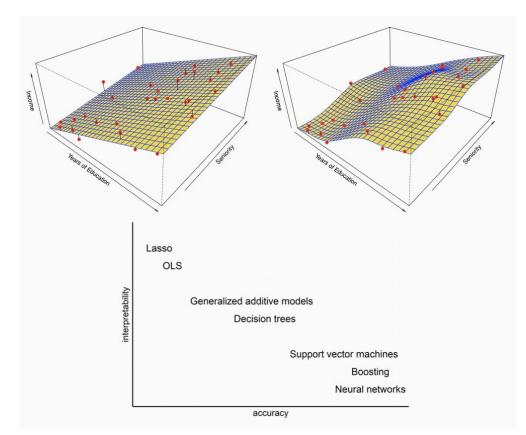
Parametric models

— We assume a functional form for f (\cdot)

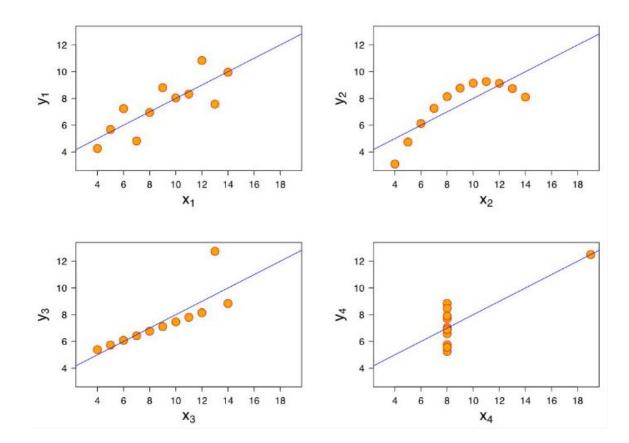
— Therefore, we reduce the problem of estimating f (\cdot) down to one of estimating the model parameters/coefficients

Disadvantage: the functional form we choose may be very different from the true unknown f (\cdot)

Trade-off between flexibility and interpretability



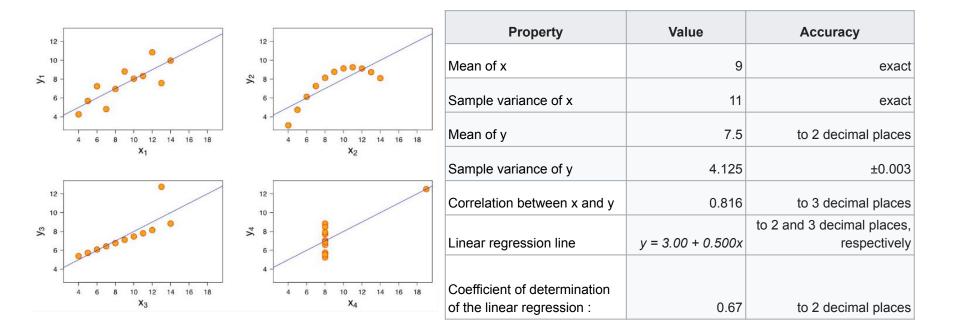
Are these data similar?



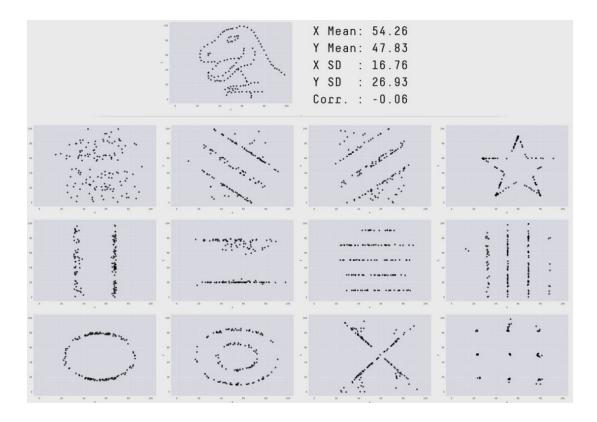
These datasets are similar "statistically"!

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of x	11	exact
Mean of y	7.5	to 2 decimal places
Sample variance of y	4.125	±0.003
Correlation between x and y	0.816	to 3 decimal places
Linear regression line	y = 3.00 + 0.500x	to 2 and 3 decimal places, respectively
Coefficient of determination of the		
linear regression :	0.67	to 2 decimal places

Anscombe's quartet

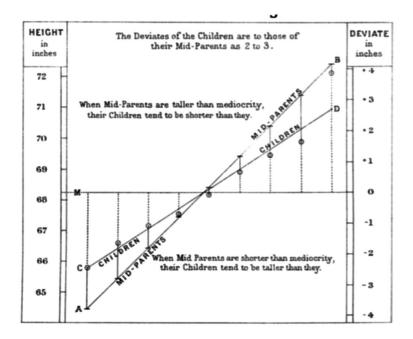


Data — first!



Regression vs Classification

Linear regression



Linear regression

$$a(x)=w_0+\sum_{j=1}^d w_j x^j,$$
 $a(x)=\sum_{j=1}^{d+1} w_j x^j=\langle w,x
angle,$

Can we solve this thing analytically?

Analytic solution

$w_* = (X^T X)^{-1} X^T y.$

Is analytical solution a good one?

Linear regression

$$a(x)=w_0+\sum_{j=1}^d w_j x^j,$$
 $a(x)=\sum_{j=1}^{d+1} w_j x^j=\langle w,x
angle,$

$$Q(w,x) = rac{1}{\ell} \sum_{i=1}^{\ell} \left(\langle w, x_i \rangle - y_i
ight)^2.$$

What about quality?

$$Q(w,x) = rac{1}{\ell} \sum_{i=1}^\ell \left(\langle w, x_i
angle - y_i
ight)^2.$$

What about "learning"?

Learning

$$egin{aligned} Q(w,x) &= rac{1}{\ell} \sum_{i=1}^{\ell} (\langle w,x_i
angle - y_i)^2 o \min_w. \ Q(w,X) &= rac{1}{\ell} \|Xw-y\|^2 o \min_w. \end{aligned}$$

$$Q(w,X) = rac{1}{\ell} \|Xw - y\|^2 o \min_w.$$

Gradient descent

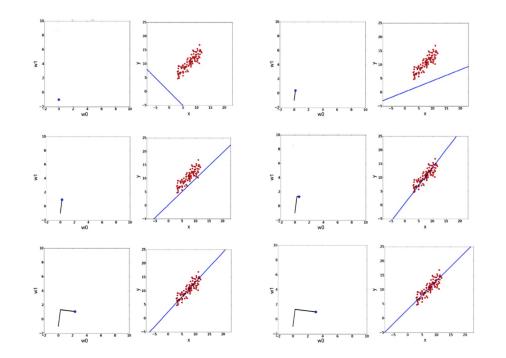
$$\begin{aligned} w^t &= w^{t-1} - \eta_t \nabla Q(w^{t-1}, X). \\ & \|w^t - w^{t-1}\| < \varepsilon. \end{aligned}$$

GD for Linear Regression

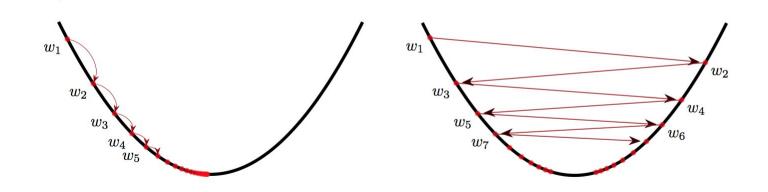
$$Q(w_0,w_1,X) = rac{1}{\ell} \sum_{i=1}^\ell (w_1 x_i + w_0 - y_i)^2.$$

$$rac{\partial Q}{\partial w_1}=rac{2}{\ell}\sum_{i=1}^\ell(w_1x_i+w_0-y_i)x_i,\qquad rac{\partial Q}{\partial w_0}=rac{2}{\ell}\sum_{i=1}^\ell(w_1x_i+w_0-y_i).$$

Example



Learning rate matters



Multidimensional case is similar

$$egin{aligned} Q(w,X) &= rac{1}{\ell} \|Xw-y\|^2 o \min_w, \
abla w Q(w,X) &= rac{2}{\ell} X^T (Xw-y) \end{aligned}$$

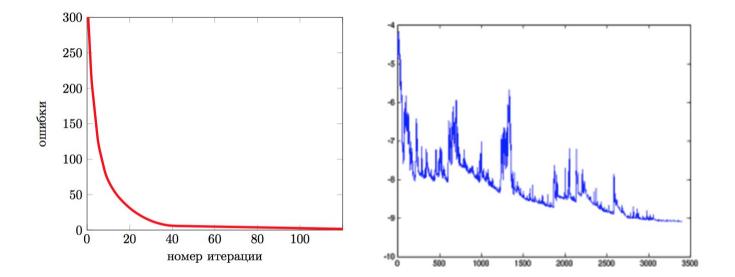
Is GD easy to compute?

$$rac{\partial Q}{\partial w_j} = rac{2}{\ell} \sum_{i=1}^\ell x_i^j (\langle w, x_i
angle - y_i).$$

Stochastic gradient descent

$$w^{t} = w^{t-1} - \eta_t \nabla Q(w^{t-1}, \{x_i\}).$$

Convergence of GD and SGD

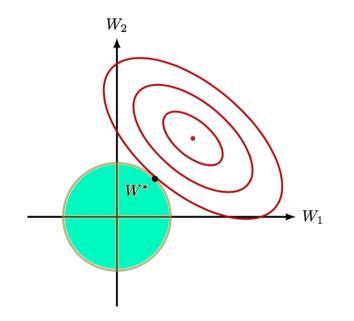


Regularization

$$\|w\|^2 = \sum_{j=1}^d w_j^2.$$

$$Q(w,X) + \lambda ||w||^2 \to \min_w$$
.

Regularization



Metrics

$$MSE(a, X) = rac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2.$$

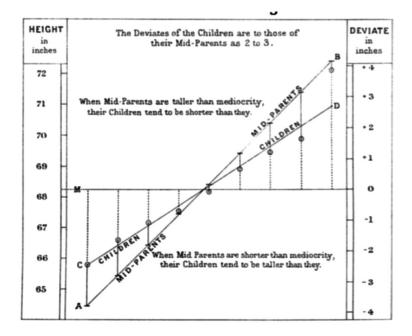
 $MAE(a, X) = rac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|.$

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} \left(a(x_{i}) - y_{i} \right)^{2}}{\sum_{i=1}^{\ell} (y_{i} - \bar{y})}, \qquad \bar{y} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_{i},$$

Quantile error

$$\rho_{\tau}(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \left((\tau - 1) \left[y_i < a(x_i) \right] + \tau \left[y_i \ge a(x_i) \right] \right) (y_i - a(x_i)) \,.$$

Linear regression statistically



Maximum likelihood estimator

$$X \sim F(x, \theta), \quad X^n = (X_1, ..., X_n),$$

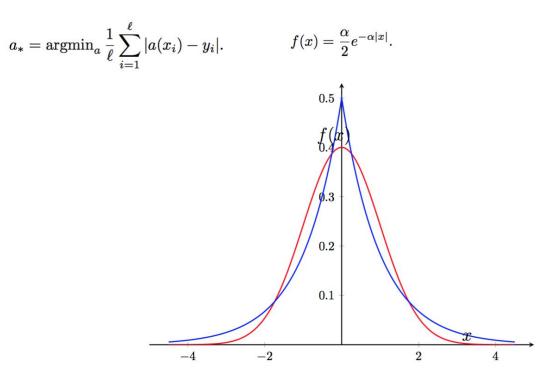
 $L(X^n, \lambda) = \prod_{i=1}^n P(X = X_i, \theta).$

 $\operatorname{argmax}_{\lambda} \ln L(X^N, \lambda)$

Gaussian noise

$$y = a(x) + arepsilon,
onumber \ a_* = \mathrm{argmin}_a \, rac{1}{\ell} \sum_{i=1}^\ell (a(x_i) - y_i)^2$$

Laplacian noise

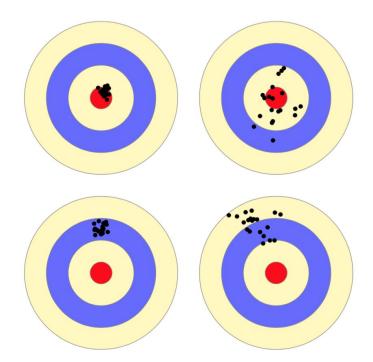


Ridge and Lasso regressions

$$w_* = \operatorname{argmin}_w \left(rac{1}{\ell} \sum_{i=1}^\ell \left(\langle w, x_i
angle - y_i
ight)^2 + \lambda \sum_{j=1}^d w_j^2
ight).$$

$$w_* = \operatorname{argmin}_w \left(rac{1}{\ell} \sum_{i=1}^\ell \left(\langle w, x_i
angle - y_i
ight)^2 + \lambda \sum_{j=1}^d |w_j|
ight).$$

Dispersion and shift



Generalization of linear models

$g\left(\mathbb{E}(y|x)\right) \approx \langle w, x \rangle,$

$\mathbb{E}(y|x) \approx g^{-1}\left(\langle w, x \rangle\right)$