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Let's talk business



Non-parametric models

— No functional form for f () is assumed
— The structure of the model is defined by the data
— May accurately fit a wider range of possible shapes for f (+)

Disadvantage: a larger number of observations is required to obtain an
accurate estimate of f (-); lower interpretability



Parametric models

— We assume a functional form for f ()

— Therefore, we reduce the problem of estimating f (-) down to one of
estimating the model parameters/coefficients

Disadvantage: the functional form we choose may be very different from
the true unknown f ()



rade-off between flexibility and interpretability
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Generalized additive models

Decision trees
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Support vector machines
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Neural networks
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Are these data similar?

X3 X4



These datasets are similar “statistically™!

Property
Mean of x
Sample variance of x
Mean of y
Sample variance of y
Correlation between x and y
Linear regression line

Coefficient of determination of the
linear regression :

Value
9
11
7.5
4.125
0.816
y =3.00 + 0.500x

0.67

Accuracy
exact
exact
to 2 decimal places
+0.003
to 3 decimal places
to 2 and 3 decimal places, respectively

to 2 decimal places



Anscombe's quartet
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Data — first!




Regression vs Classification



Linear regression
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The Deviates of the Children are to those of
their Mid-Parents as 2t 3.

71 | When Mid-Parents are taller than mediocrity,

their Children tend to be shorter than they.
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Linear regression



Can we solve this thing analytically?



Analytic solution

w, = (XTX) 1 Xx1y.



Is analytical solution a good one?



Linear regression



What about quality?



What about “learning™?



Learning



Gradient descent



GD for Linear Regression
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Example
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Learning rate matters
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Multidimensional case is similar

1
Qw, X) = 4| Xw — y|* - min,

VuQ(w, X) = 3 X7 (Xw—y)



Is GD easy to compute?



Stochastic gradient descent

w' = w ! = VQ(w' T, {z:}).



Convergence of GD and SGD
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Regularization

d
Jwl? =3 w?
j=1

Q(w, X) + Aw|? = mui)n.



Regularization




Metrics
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Quantile error
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Linear regression statistically

-~
r“l,m’" The Deviates of the Children are to those of DEVIATE

ey their Mid-Parents as 2t 3. i
inches B inches |
— x —

72 H /8 o

/
= )

71 | When Mid-Parents are taller than mediocrity,
their Children tend to be shorter than they. Q’ /

\ H 2
0 H OM

69
o |
68 ‘
1
67 |
- -2 |
66 |
|
H -3 |

65




Maximum likelihood estimator

X s Bl l)y ™ =0 Xn),

L(x™, ) =] P(X = X;,0).

=1

argmax, In L(X™, \)



Gaussian noise



Laplacian noise
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Ridge and Lasso regressions
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Generalization of linear models

9 (E(y|z)) = (w, z),

E(y|z) = g7 ((w,2))



