Mathematical Economics - 1st Semester - 2023/2024

Exercises - Group I

1. (DeMorgan's laws) Let $\Omega \subset \mathbb{R}^{n}, n \in \mathbb{N}$ and let $A, B, C \subset \Omega$. Show that:
(a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(b) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(c) $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$
2. Sketch the following sets:
(a) $A_{1}=\left\{x \in \mathbb{R}: x^{2}>1\right\}$ and $A_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}>1\right\}$
(b) $B=\left\{x \in \mathbb{R}: x^{3}>1\right.$ and $\left.x^{4}<16\right\}$
(c) $C=\left\{x \in \mathbf{Z}: x^{2}<2\right.$ and x is even $\}$
(d) $B \cup C$ and $\left(A_{1}\right)^{c}$
(e) $A_{1} \times B$
(f) $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 4\right\}$
(g) $E=\left\{(x, y) \in \mathbb{R}^{2}: x^{2} \leq y\right.$ and $\left.1 \geq y+x^{2}\right\}$
3. Consider the following real values maps defined by $f(x)=\sqrt{x-1}$ and $g(x)=x^{2}-4$.
(a) Compute $(f-g)(1),(f g)(0)$ and $f(3) / g(2)$ if they exist.
(b) Define the maps $f \circ g$ and $g \circ f$ (including their domains).
(c) Do f and g commute?
(d) Define the inverse of f and g (in a suitable domain).
4. Sketch the graph of the following real valued functions $f: D \rightarrow \mathbb{R}$, determine if are injective/surjective and compute its inverse (if it exists):
(a) $f(x)=x^{3}+1$ with $x \in \mathbb{R}$
(b) $f(x)=x^{2}-x$ with $x \in \mathbb{R}$
(c) $f(x)=\sqrt{x+1}$ with $x>0$.
(d) $f(x)=\frac{x-1}{x+1}$ with $x>-1$
(e) $f(x)=2 e^{-x}$ with $x \in \mathbb{R}$
(f) $f(x)=\log \left(x^{2}+1\right)$ with $x>0$
5. (a) Find a bijective function mapping \mathbb{N} to \mathbf{Z}.
(b) Find a bijective function mapping \mathbb{R} to $]-10,10[$.
6. Show that the following functions $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy the four axioms of a metric:
(a) $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$
(b) $d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$
(c) $d(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$

For each of the metrics above sketch the set

$$
\left\{x \in \mathbb{R}^{2}: d(x, 0)=1\right\} .
$$

7. Consider the open intervals $\left.A_{n}=\right]-1 / n, 1 / n[$ with $n \in \mathbb{N}$. Show that

$$
\bigcap_{n \in \mathbb{N}} A_{n}=\{0\} .
$$

Conclude that the intersection of a countable set of open sets might be closed.
8. Consider the following sequence in \mathbb{R}^{3} :

$$
u_{n}=\left(\left(\frac{n+3}{n}\right)^{2 n} ; \frac{n^{2}(-1)^{2 n+1}}{5 n^{2}+1} ; \frac{4 n^{5}+5 n^{3}}{8 n^{5}+7 n^{2}}\right), \quad n \in \mathbb{N}
$$

Does $\left(u_{n}\right)_{n}$ converge?
9. The (maximal) domain of $f: D_{f} \rightarrow \mathbb{R}$ is the set

$$
D_{f}=\left\{(x, y) \in \mathbb{R}^{2}: y>(x-1)^{2} \wedge(x, y) \neq(1,5)\right\} .
$$

(a) Define the closure and the set of accumulation points of D_{f}.
(b) Is D_{f} an open set? Why?
(c) Given one possible analytical expression for f.
10. Which is the set of accumulation points of $\left\{\left(\cos (n \pi),\left(\frac{1}{2}\right)^{n}\right), n \in \mathbb{N}\right\} \subset \mathbb{R}^{2}$?
11. Consider the map $f: D_{f} \rightarrow \mathbb{R}, D_{f} \subset \mathbb{R}^{2}$, given by:

$$
f(x, y)=\frac{\ln \left(4-(x-1)^{2}-y^{2}\right)}{\sqrt{y-x}}
$$

(a) Define analytically the domain of f, D_{f} and represent it in the plane (x, y)
(b) Define analytically $\operatorname{int}\left(D_{f}\right), c l\left(D_{f}\right)$ and $\partial\left(D_{f}\right)$.
(c) Is D_{f} compact?
12. Consider $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+(y+2)^{2}<4 \wedge x y \neq 0\right\}$.
(a) Is A a compact set?
(b) Define analytically its topological border.
13. Define the topological interior, closure and accumulation points of the following sets:
(a) $A=\{(1,1),(1,0)\}$
(b) $B=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0 \wedge y=\frac{(-1)^{n}}{n}, n \in \mathbb{N}\right\}$
14. Sketch the following sets and decide which are open, closed, bounded and compact.
(a) $A=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0\right\}$
(b) $B=\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq x^{2}+y^{2} \leq 4\right\}$
(c) $A \cap B$
(d) $C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+2 x>y\right\}$
(e) $C \backslash A$
(f) $D=\left\{(x, y, z) \in \mathbb{R}^{3}: z>x^{2}+y^{2}\right\}$
(g) $E=\left\{(x, y, z) \in \mathbb{R}^{3}:-1 \leq z \leq 1\right\}$
(h) $F=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2} \geq x^{2}+y^{2} \quad\right.$ and $\left.\quad z \leq 0\right\}$
(i) $D \cap E$
(j) $(\bar{D} \cup F) \cap E$
15. Show that:
(a) Any finite union of compact sets is compact.
(b) $A \subset \mathbb{R}^{n}$ is bounded if and only if \bar{A} is compact.
16. Exhibit an example of a compact set of \mathbb{R}^{2} without accumulation points.
17. In this exercise you will study the Cantor set C. Let $A_{0}=[0,1]$ and define A_{1} by cutting A_{0} in three equal parts and then removing the middle part from A_{0}. i.e., $A_{1}=[0,1 / 3] \cup[2 / 3,1]$. The set A_{1} is a union of two disjoint intervals. Now for each interval of A_{1} we proceed as before. Cut in three equals parts and remove from each its middle part. Call this new set A_{2}. Continue this process indefinitely to obtain a sequence of sets $A_{n}, n \geq 0$. The Cantor set is the intersection of all these sets, i.e.,

$$
C=\bigcap_{n \geq 0} A_{n}
$$

(a) Obtain the analytic expression for A_{2}.
(b) Show that each set A_{n} is a union of 2^{n} disjoint closed intervals.
(c) Is A_{n} closed? Why?
(d) Prove that C is compact.
18. Show that the limit of a converging sequence is unique, i.e., a converging sequence cannot more than one limit.
19. For each of the following functions $f: D \rightarrow \mathbb{R}$ determine its continuity points and, using the Weierstrass theorem, decide if the function has a maximum or minimum.
(a) $f(x)=x^{2}$ where $D=\{x \in \mathbb{R}:|x| \leq 1\}$
(b) $f(x)=x^{3}-x^{2}+x-1$ where $D=[-2,-1] \cup[1,2]$
(c) $f(x)=x \cos ^{2}(1 / x)$ where $D=\left\{\frac{(-1)^{n}}{2 \pi n}: n \in \mathbb{N}\right\} \cup\{0\}$
(d) $f(x, y)=x y$ where $D=[-1,1]^{2}$
(e) $f(x, y)=x \log (y)$ where $D=] 0,1]^{2}$
(f) $f(x, y)=e^{-x^{2}-y^{2}}$ where $D=\mathbb{R}^{2}$
20. Consider the function $f:[-1,1] \rightarrow[-1,1]$ defined by $f(x)=\sin (\lambda x)$ where $\lambda \in$ $] 0,1[$. Sketch the graph of f and interpret the fixed point geometrically (also draw the bissectrix, i.e., $y=x$).
21. Complete the sentence:

The continuous map $f(x, y)=x^{2}+y^{2}$ has a maximum but not a minimum when restricted to the set

$$
M=\left\{(x, y) \in \mathbb{R}^{2}:\right.
$$

\qquad .\}
\qquad 's Theorem cannot be applied because M is not \qquad
22. Show that $f:] 0,1 / 4[\rightarrow] 0,1 / 4\left[\right.$ defined by $f(x)=x^{2}$ is a Lipschitz contraction. Can you conclude that f has a unique fixed point?
23. Determine whether the following functions $f: D \rightarrow \mathbb{R}$ are Lipschitz contractions. For each function determine its fixed points.
(a) $f(x)=\frac{1}{4} x\left(1-x^{2}\right)$ with $D=[-1,1]$
(b) $f(x)=\arctan (x / 2)$ with $D=\mathbb{R}$
(c) $f(x)=\frac{1}{4} \sin \left(x^{3}\right)$ with $D=[-1,1]$
(d) $f(x)=\sqrt{1+x}$ with $D=[0,+\infty[$
(e) $f(x, y)=\left(\frac{x}{2}+5, \frac{y}{3}-1\right)$ with $D=\mathbb{R}^{2}$
24. Use the Banach fixed point theorem to show that the sequence $x_{n+1}=\sqrt{1+x_{n}}$, $n \in \mathbb{N}$ and $x_{0}=0$ converges to the golden ratio

$$
\frac{1+\sqrt{5}}{2}=\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}
$$

25. Decide which of the following sets are convex:
(a) $A=\left\{(x, y) \in \mathbb{R}^{2}: y \geq x^{2}\right\}$
(b) $B=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2}\right\}$
(c) $C=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{4}+y^{2} \leq 1\right\}$
(d) $A \cap C$
(e) $C \backslash B$
(f) $D=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=1, x, y, z \geq 0\right\}$
26. Consider the function $f(x)=\frac{1}{2}(x+1)$ defined on the interval $] 0,1[$. Show that $f(] 0,1[) \subset] 0,1[$. Does f has a fixed point in $] 0,1[$? Can you apply the Brouwer fixed point theorem to f ?
27. Consider the following matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 \\
1 & 0 & 0 \\
0 & 1 / 2 & 0
\end{array}\right)
$$

and define the function $f(v)=A v$ where $v \in \Delta^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=\right.$ $1, x, y, z \geq 0\}$.
(a) Show that $f\left(\Delta^{2}\right) \subset \Delta^{2}$.
(b) Can you apply the Brouwer fixed point theorem to f ? Can you show that f has a fixed point?
(c) If yes, compute the fixed points of f explicitly.
28. Find a continuous function $f:[0,1[\rightarrow[0,1[$ with no fixed points. Can you apply the Brouwer fixed point theorem to f ?
29. Find a continuous function $f:[0,1] \rightarrow[0,1]$ with an infinite number of fixed points.
30. Consider the function $f:[0,1] \rightarrow[0,1]$ defined by

$$
f(x)= \begin{cases}2 x, & x \leq 1 / 2 \\ 2-2 x, & x>1 / 2\end{cases}
$$

(a) Can you apply the Brouwer fixed point to f ?
(b) Compute the fixed points of f and of $f \circ f$ (hint: draw the graph of the functions).
(c) How many fixed points has $f^{n}=f \circ \cdots \circ f$? Here, f^{n} denotes the composition of f with itself n times $\left(f^{2}=f \circ f, f^{3}=f \circ f \circ f\right.$, etc.)
31. Consider a pure exchange economy with 2 commodities and 2 consumers. Denote by p_{1} and p_{2} the relative price of commodity 1 and 2 , respectively. The 1 st consumer has an initial amount of 1 unit of commodity 1 and 2 units of commodity 2 . The 2nd consumer has an initial amount of 2 units of commodity 1 and 1 unit of commodity 2. Consumers engage in exchanging with the following demand functions

$$
x_{1,1}(p)=\frac{\alpha\left(p_{1}+2 p_{2}\right)}{p_{1}}, \quad x_{1,2}(p)=\frac{(1-\alpha)\left(p_{1}+2 p_{2}\right)}{p_{2}}
$$

for the 1st consumer and

$$
x_{2,1}(p)=\frac{\alpha\left(2 p_{1}+p_{2}\right)}{p_{1}}, \quad x_{2,2}(p)=\frac{(1-\alpha)\left(2 p_{1}+p_{2}\right)}{p_{2}}
$$

for the 2 nd consumer, where $\alpha \in[0,1]$. Recall that $x_{i, j}(p)$ is the demand of commodity j of consumer i. Check that the Walras's law is satisfied. Determine an equilibrium price for this economy.
32. Sketch the following hyperplanes and half-spaces:
(a) $H((1,1),-1)$
(b) $H^{+}((2,-1), 1)$
(c) $H((1,0,-1), 1)$
(d) $H^{-}((0,1,0), 2)$
33. (a) Let A be the set of points in \mathbb{R}^{n} whose first coordinate is equal to $a \in \mathbb{R}$. Find $p \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$ such that $A=H(p, c)$.
(b) Find a hyperplane $H(p, c)$ that separates $\Delta^{2}=\left\{(x, y, z) \in \mathbb{R}_{+}^{3}: x+y+z=1\right\}$ and $A=\left\{(x, y, z) \in \mathbb{R}^{3}: x=-2\right\}$.
(c) Find the hyperplane $H(p, c)$ that contains the points $(1,0,0),(1,1,0)$ and $(0,1,1)$.
34. Explain, using the hyperplane separation theorem, if it is possible to prove the existence of a hyperplane separating A and B :
(a) $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ and $B=\left\{(x, y) \in \mathbb{R}^{2}: x+y=2\right\}$
(b) $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<3\right\}$ and $B=\left\{(x, y) \in \mathbb{R}_{+}^{2}: x+y=1\right\}$
(c) $A=C \cap D$ with $C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=2\right\}$ and $D=[-6,6] \times[-5,5]$, and $B=[-1,1] \times[-1,1]$
35. Decide if the following correspondences $F:[0,1] \rightrightarrows[0,1]$ are upper hemicontinuous and/or have the closed graph property:
(a)

$$
F(x)= \begin{cases}{[1 / 4,3 / 4],} & x<1 / 2 \\ {[1 / 2,3 / 4],} & x \geq 1 / 2\end{cases}
$$

(b)

$$
F(x)= \begin{cases}{\left[x^{2},(x+1) / 2\right],} & x<1 \\ \{0,1\}, & x=1\end{cases}
$$

(c)

$$
F(x)= \begin{cases}] x, 1-x[, & x<1 / 2 \\ \{1 / 4,3 / 4\}, & x \geq 1 / 2\end{cases}
$$

(d)

$$
F(x)=] x / 2,(x+1) / 2[
$$

36. Explain if the following correspondences satisfy the hypothesis of the Kakutani fixed point theorem. Compute the fixed points if they exist.
(a) $F:[0,2] \rightrightarrows[0,2]$ defined by

$$
F(x)= \begin{cases}\{1\}, & 0 \leq x<1 \\ {[1,2],} & x=1 \\ \{2\}, & 1<x \leq 2\end{cases}
$$

(b) $F:[0,20] \rightrightarrows[0,20]$ defined by

$$
F(x)= \begin{cases}\{10-x\}, & 0 \leq x<7 \\ {[3,20],} & x=7 \\ \{x-4\}, & 7<x \leq 20\end{cases}
$$

(c) $F:[-6,20] \rightrightarrows[-6,20]$ defined by

$$
F(x)= \begin{cases}\{x+1\}, & -6 \leq x<7 \\ {[-6,10],} & x=7 \\ \{(x+5) / 2\}, & 7<x \leq 20\end{cases}
$$

(d) $F:[-6,20] \rightrightarrows[-6,20]$ defined by

$$
F(x)= \begin{cases}\{x+1\}, & -6 \leq x<7 \\ {[-6,6] \cup[8,10],} & x=7 \\ \{(x+5) / 2\}, & 7<x \leq 20\end{cases}
$$

