INTERNATIONAL ECONOMICS

Labor Productivity and Comparative advantage: The Ricardian model (cont'd)

A Numerical Example (1 of 5)

Unit labor requirements Cheese Wine

Home
Foreign
$a_{L C}=1$ hour $/ \mathrm{lb}$
$a_{L C}^{*}=6$ hours $/ \mathrm{lb}$
$a_{L w}=2$ hours/gallon
$a_{L W}^{*}=3$ hours/gallon

- What is the home country's opportunity cost of producing cheese? $\quad \frac{a_{L C}}{a_{L W}}=\frac{1}{2}$, to produce one pound of cheese, stop producing $\frac{1}{2}$ gallon of wine.

A Numerical Example (2 of 5)

- The home country is more efficient in both industries, but has a comparative advantage only in cheese production.

$$
\frac{1}{2}=\frac{a_{L C}}{a_{L W}}<\frac{a_{L C}^{*}}{a_{L W}^{*}}=2
$$

- The foreign country is less efficient in both industries, but has a comparative advantage in wine production.

A Numerical Example (3 of 5)

- With trade, the equilibrium relative price of cheese to wine settles between the two opportunity costs of cheese.
- Suppose the intersection of RS and RD occurs at
$\frac{P_{C}}{P_{w}}=1$, so one pound of cheese trades for one gallon of wine.
- Trade causes the relative price of cheese to rise in the home country and fall in foreign.

A Numerical Example (4 of 5)

- With trade, the foreign country can buy one pound of cheese for

$$
\frac{P_{C}}{P_{w}}=\text { one gallon of wine }
$$

- instead of stopping production of $\frac{a_{L C}^{*}}{a_{L W}^{*}}=2$ gallons
of wine to free up enough labor to produce one pound of cheese in the absence of trade.
- Suppose $L^{*}=3,000$. The foreign country can trade its 1,000 gallons maximum production of wine for 1,000 pounds of cheese, instead of the 500 pounds of cheese it could produce itself.

A Numerical Example (5 of 5)

- With trade, the home country can buy one gallon of wine for $\frac{P_{W}}{P_{C}}=$ one pound of cheese,
- instead of stopping production of $\frac{a_{L W}}{a_{L C}}=2$ pounds
of cheese to free up enough labor to produce one gallon of wine in the absence of trade.
- The home country can trade its 1,000 pounds maximum production of cheese for 1,000 gallons of wine, instead of the 500 gallons of wine it could produce itself.

Relative Wages

- Suppose that $P_{C}=\$ 12 /$ pound, and $P_{w}=\$ 12 /$ gallon .
- Since domestic workers specialize in cheese production after trade, their hourly wages will be

$$
\frac{P_{C}}{a_{L C}}=\frac{\$ 12}{1}=\$ 12 .
$$

- Since foreign workers specialize in wine production after trade, their hourly wages will be

$$
\frac{P_{w}}{a_{L w}^{*}}=\frac{\$ 12}{3}=\$ 4 .
$$

- The relative wage of domestic workers is therefore $\frac{\$ 12}{\$ 4}=3$.

Relative Wages

- The relative wage lies between the ratio of the productivities in each industry.
- The home country is $\frac{6}{1}=6$ times as productive in cheese production, but only $\frac{3}{2}=1.5$ times as productive in wine production.
- The home country has a wage three times higher than the foreign country.

Relative Wages

- These relationships imply that both countries have a cost advantage in production.
- High wages can be offset by high productivity.
- Low productivity can be offset by low wages.
- In the home economy, producing one pound of cheese costs
$\$ 12$ (one worker paid $\$ 12 / \mathrm{hr}$), but would have cost \$24 (six paid \$4/hr) in Foreign.
- In the foreign economy, producing one gallon of wine costs $\$ 12$ (three workers paid $\$ 4 / \mathrm{hr}$), but would have cost $\$ 24$ (two paid $\$ 12 / \mathrm{hr}$) in Home.

Relative Wages

- Because foreign workers have a wage that is only $\frac{1}{3}$
the wage of domestic workers, they are able to attain a cost advantage in wine production, despite low productivity.
- Because domestic workers have a productivity that is six times that of foreign workers in cheese production, they are able to attain a cost advantage in cheese production, despite high wages.

