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Chapter 15
Knowing When Not to 
Trust Your Data

What is inferential statistics and who uses it? Inferential statistics  
is the  practice of collecting and analyzing numerical data for the 
 purpose of making scientific inferences from a representative sample 

to a population. Government agencies, business analysts, market researchers, 
health researchers, survey companies, education researchers, and many others 
use inference.

In this chapter, you discover the benefits and potential limitations of sampling. 
You then find out about hypothesis testing so you can learn the logic behind per-
forming statistical tests. From there, we describe distributions, which provide 
insight into statistical theory and will lead you to calculating z-scores, so that you 
can identify the position of any data point on a distribution.

Sampling
Descriptive statistics, which we introduce in Chapter 14, describe the data in a sam-
ple through a number of summary procedures and statistics. For example, you can 
calculate the mean or standard deviation of a group of people so that you can 
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better describe them. Descriptive statistics are mostly useful if you just want to 
describe a specific sample. Most of the time, however, researchers are concerned 
not about a sample but about a population. They use the results from a sample to 
make inferences about the true values in a population.

In an ideal world, you’d collect data from every single person you’re interested in. 
Because that is not realistic, you use samples. Sampling is the process of collecting 
data on a portion of all the elements of interest as an alternative to looking at the 
entire set of elements. Sampling allows us to describe and draw conclusions about 
the population, and is performed for feasibility, accessibility, and efficiency in 
terms of both time and money. If you follow some rules when sampling, you can 
get answers that are close to the population values, with high probability.

Following are the characteristics of an effective sample:

 » Probabilistic sampling: One in which each element of the population has a 
known, nonzero chance of being included in the sample. A probability sample 
allows you to do statistical tests, place confidence intervals around statistics 
(so that you know the probable range of values), and make inferences about 
the total population.

 » Sufficiently large: Small samples will not provide the appropriate statistical 
power to discover true differences between groups or to determine the effect 
of one variable on another.

 » Unbiased: Bias occurs because some units are overselected or underselected 
for the sample. Some types of bias include selection bias in how the sampling 
itself is done, and nonresponse bias, which occurs when those who decline to 
participate are different than those who do respond.

With nonprobability samples (such as snowball, convenience, quota, or focus 
groups), calculating the probability of selection for all elements in the population 
is impossible. Therefore, statistical theory does not apply to a nonprobability 
sample, which tells us only about the elements in the sample, not about any 
greater population.

Understanding Sample Size
An important aspect of statistics is that they vary from one sample to another. Due 
to the effects of random variability, it is unlikely that any two samples drawn from 
the same population will produce the same statistics.
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By plotting the values of a particular statistic, such as the mean, from a large 
number of samples, you can obtain a sampling distribution of the statistic. For small 
numbers of samples, the mean of the sampling distribution may not closely 
resemble that of the population. However, as the number of samples taken 
increases, the closer the mean of the sampling distribution (the mean of all the 
means) gets to the population mean. For an infinitely large number of samples, 
the mean will be exactly the same as the population mean.

Additionally, as sample size increases, the amount of variability in the distribu-
tion of sample means decreases. If you think of variability in terms of the error 
made in estimating the mean, it should be clear that the more evidence you 
have — that is, the more cases in the sample — the smaller the error in estimat-
ing the mean.

Sample size strongly influences precision, that is, how close estimates from 
 different samples are to each other. As an example, the precision of a sample 
 proportion is approximately equal to one divided by the square root of the sample 
size. Table 15-1 displays the precision for various sample sizes.

Testing Hypotheses
Suppose you collected customer satisfaction data on a subset of your customers 
and determine that the average customer satisfaction is 3.5 on a 5-point scale. You 
want to take this information a step further, though, and determine whether a 
difference in satisfaction exists between customers who bought Product A (3.6) 
and customers who bought Product B (3.3). The numbers aren’t exactly the same, 
but are the differences due to random variation? Inferential statistics can answer 
this type of question.

Inferential statistics enables you to infer the results from the sample on which you 
have data and apply it to the population that the sample represents. Understand-
ing how to make inferences from a sample to a population is the basis of inferen-
tial statistics. You can reach conclusions about the population without studying 
every single individual, which can be costly and time consuming.

TABLE 15-1	 Sample Size and Precision
Sample Size Precision

100 1/√100 = 10%

400 1/√400 = 5%

1,600 1/√1600 = 2.5%
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Whenever you want to make an inference about a population from a sample, you 
must test a specific hypothesis. Typically, you state two hypotheses:

 » Null hypothesis: The null hypothesis is the one in which no effect is present. 
For example, you may be looking for differences in mean income between 
males and females, but the (null) hypothesis you’re testing is that there is no 
difference between the groups. Or the null hypothesis may be that there are 
no differences in satisfaction between customers who bought Product A (3.6) 
and customers who bought Product B (3.3). In other words, the differences 
are due to random variation.

 » Alternative hypothesis: The alternative hypothesis (also known as the research 
hypothesis) is generally (although not exclusively) the one researchers are really 
interested in. For example, you may hypothesize that the mean incomes of 
males and females are different. Or for the customer satisfaction example, the 
alternative hypothesis may be that there is a difference in satisfaction between 
customers who bought Product A (3.6) and customers who bought Product B 
(3.3). In other words, the differences are real.

When making an inference, you never know anything for certain because you’re 
dealing with samples rather than populations. Therefore, you always have to work 
with probabilities. You assess a hypothesis by calculating the probability, or the 
likelihood, of finding your result. A probability value can range from 0 to 1 (cor-
responding to 0 percent to 100 percent, in terms of percentages). You can use 
these values to assess whether the likelihood that any differences you’ve found 
are the result of random chance.

So, how do hypotheses and probabilities interact? Suppose you want to know who 
will win the Super Bowl. You ask your fellow statisticians, and one of them says 
that he has built a predictive model and he knows Team A will win. Your next 
question should be, “How confident are you in your prediction?” Your friend says, 
“I’m 50 percent confident.” Are you going to trust this prediction? Of course not, 
because there are only two outcomes and 50 percent means the prediction is 
random.

So, you ask another fellow statistician, and he tells you that he has built a pre-
dictive model. He knows that Team A will win, and he’s 75 percent confident in 
his prediction. Are you going to trust his prediction? Well, now you start to think 
about it a little. You have a 75 percent chance of being right and a 25 percent 
chance of being wrong, and decide that a 25 percent chance of being wrong is 
too high.

So, you ask another fellow statistician, and she tells you that she has built a 
 predictive model and knows Team A will win, and she’s 90 percent confident in 
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her prediction. Are you going to trust her prediction? Now you have a 90 percent 
chance of being right, and only a 10 percent chance of being wrong.

This is the way statistics work. You have two hypotheses — the null hypothesis 
and the alternative hypothesis — and you want to be sure of your conclusions.  
So, having formally stated the hypotheses, you must then select a criterion for 
acceptance or rejection of the null hypothesis. With probability tests, such as the 
chi-square test of independence or the independent samples t-test, you’re testing 
the likelihood that a statistic of the magnitude obtained (or greater) would have 
occurred by chance, assuming that the null hypothesis is true.

Remember, you always assess the null hypothesis, which is the hypothesis that 
states there is no difference or no relationship. In other words, you reject the null 
hypothesis only when you can say that the result would have been extremely 
unlikely under the conditions set by the null hypothesis; if this is the case, the 
alternative hypothesis should be accepted.

But what criterion (or alpha level, as it is often known) should you use? Tradition-
ally, a 5 percent level is chosen, indicating that a statistic of the size obtained 
would be likely to occur on only 5 percent of occasions (or once in 20 occasions) 
should the null hypothesis be true. By choosing a 5 percent criterion, you’re 
accepting that you’ll make a mistake in rejecting the null hypothesis 5 percent of 
the time (should the null hypothesis be true).

Hypothesis testing has been frustrating students and instructors of statistics for 
years! Don’t be surprised if you have to reread this chapter several times  — 
hypothesis testing is confusing stuff!

Calculating Confidence Intervals
Consider the example in Figure 15-1, in which a treatment group has a mean of 
14.43 and a control group has a mean of 12.37. You need to detect whether the 
means are significantly different or due to chance.

FIGURE 15-1: 
The Group 

Statistics table.
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A 95 percent confidence interval provides a measure of the precision with which the 
true population difference is estimated. In the example (see Figure  15-2), the 
95  percent confidence interval for the mean difference between groups ranges 
from 1.571 to 2.549; the actual mean difference is 2.06. So the 95 percent confi-
dence interval indicates the likely range of the population mean difference.

Although the actual value is 2.06, you are 95 percent confident that the difference 
value will fall anywhere between 1.571 to 2.549 (basically the mean difference +/− 
the standard error of the difference (.249) multiplied by 1.96).

The only value that you’re getting directly from the data is the mean, 2.06. Statis-
tics students often memorize the number 1.96, which is the 5 percent cutoff 
from the normal distribution — but not from this specific dataset. So the lower 
value (1.571) and upper value (2.549) of the confidence interval are derived using 
the value 1.96, which assumes a normal distribution. If the distribution is not 
normal, the confidence interval numbers will be wrong.

Note that the confidence interval does not include zero because there is a statisti-
cally significant difference between groups. If zero had been included within the 
range, it would indicate that there are no differences between the groups — that 
is, you’re saying that the probability value is greater than 0.05. In essence, the 
95 percent confidence interval is another way of testing the null hypothesis. So, if 
the value of zero does not fall within the 95 percent confidence interval, you’re 
saying that the probability of the null hypothesis (that is, no difference or a 
 difference of zero) is less than 0.05.

Conducting In-Depth Hypothesis Testing
We just introduced inferential statistics, which allows us to infer the results from 
your sample to the population. This concept is important because you want to do 
research that applies to a larger audience than just the specific group of people 
you test.

FIGURE 15-2: 
The Independent 

Samples test.
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As mentioned, hypothesis testing allows researchers to develop hypotheses,  
which are then assessed to determine the probability, or likelihood, of the find-
ings. Two hypotheses are typically created: The null hypothesis states that no 
effect is present, and the alternative hypothesis states that an effect is present.

For example, suppose you want to assess whether differences in mean income 
exist between males and females. The null hypothesis states that there is no 
 difference in income between the groups, and the alternative hypothesis states 
that there is a difference in income between the groups. You then assess the null 
hypothesis by calculating the probability that it is true. At this point, you investi-
gate the probability value, and if it’s less than 0.05, you say that you’ve found 
support for the alternative hypothesis because the probability that the null 
hypothesis is true is low (less than 5 percent). If it’s greater than 0.05, you say 
that you’ve found support for the null hypothesis because there is a decent chance 
that it’s true (greater than 5 percent).

However, too often people immediately jump to the conclusion that the finding is 
statistically significant or is not statistically significant. Although that’s literally 
true, because you use those words to describe probability values below 0.05 and 
above 0.05, statistical significance doesn’t imply that only two conclusions can be 
drawn about your finding. Table 15-2 is a more realistic scenario.

Note that several outcomes are possible. Let’s take a look at the first row. It could 
be that, in the real world, there is no relationship between the variables, which is 
what your test found. In this scenario, you would be making a correct decision. 
However, what if in the real world there was no relationship between the variables 
and your test found that there was a significant relationship? In this case, you 
would be making a Type 1 error. This type of error is known also as a false positive 
because the researcher falsely concludes a positive result (thinks it does occur 
when it does not).

A Type I error is explicitly taken into account when performing statistical tests. 
When testing for statistical significance using a 0.05 criterion, you acknowledge 
that if there is no effect in the population, the sample statistic will exceed the 

TABLE 15-2	 Types of Statistical Outcome
In the Real World Statistical Test Outcome

Not Significant Significant

No difference (null is true) Correct decision False positive; Type I error

True difference (alternative is true) False negative; Type II error Correct decision, power
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criterion on average 5 times out of 100 (or 0.05). So this type of error could occur 
strictly by chance — or if the researcher used the wrong test. (An inappropriate test 
is used when you don’t meet the assumptions of a test, which is why knowing and 
testing assumptions is important.)

How could SPSS let you do the wrong test? The calculations will always be correct, 
but you have to know which menu to work in. For instance, the T-test is a para-
metric test, and it assumes that your data is shaped like a bell curve. In fact (and 
this is even more technical), it assumes that the errors are shaped like a bell curve. 
And there is a separate menu with tests that you can use when this isn’t true. You 
may be surprised by how many SPSS users get confused about these issues. What 
happens is this: A parametric test might yield a probability of 0.047 and a non-
parametric test might yield a probability of 0.053. You can see the problem now. If 
you declare a result is significant, an expert might say the same result is not 
significant.

For now, the main message is this — assumptions are not just a bunch of arbitrary 
rules. They sometimes affect which conclusions you draw.

Now let’s take a look at the second row of Table 15-2. It could be that in the real 
world there is a relationship between the variables, and this is what your test 
found. In this scenario, you would be making a correct decision. Power is defined 
as the ability to detect true differences if they exist.

However, what if in the real world there was a relationship between the variables 
and your test found that there was no significant relationship? In this case, you 
would be making a Type II error. This type of error is known also as a false negative 
because the researcher falsely concludes a negative result (thinks it does not occur 
when in fact it does). This type of error typically happens when you use small 
samples, so your test is not powerful enough to detect true differences. (When 
sample sizes are small, precision tends to be poor.) The error could occur also if 
the researcher used the wrong test.

You know that larger samples are more precise, thus power analysis was devel-
oped to help researchers determine the minimum sample size required to have a 
specified chance of detecting a true difference or relationship.

Power analysis can be useful when planning a study but you must know the mag-
nitude of the hypothesized effect and an estimate of the variance.

A related issue involves drawing a distinction between statistical significance and 
practical importance. When an effect is found to be statistically significant, you 
conclude that the population effect (difference or relation) is not zero. However, 
this conclusion allows for a statistically significant effect that is not quite zero yet 
so small as to be insignificant from a practical or policy perspective.
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As mentioned, very large samples yield increased precision, and in such samples 
very small effects may be found to be statistically significant but the question is 
whether the effects make any practical difference. For example, suppose a 
 company is interested in customer ratings of one of its products and obtains 
scores from several thousand customers. Furthermore, suppose the mean ratings 
on a 1 to 5 satisfaction scale are 3.25 for male customers and 3.15 for female 
 customers, and this difference is found to be statistically significant. Would such 
a small difference be of any practical interest or use?

When sample sizes are small (say under 30), precision tends to be poor and so only 
relatively large effects are found to be statistically significant. With moderate 
samples (say 50 to 200), small effects tend to show modest significance while 
large effects are highly significant. For very large samples (several hundred or 
thousand), small effects can be highly significant. Thus, an important aspect of an 
analysis is to examine the effect size and determine if it is important from a 
 practical or policy perspective.

Using the Normal Distribution
The distribution of a variable refers to the numbers of times each outcome occurs. 
Many statistical distributions exists, such as binomial, uniform, and Poisson, but 
one of the most common distributions is the normal distribution. Many naturally 
occurring phenomena, such as height, weight, and blood pressure, follow a  normal 
distribution (curve).

The normal distribution (often referred to as the normal bell-shaped curve) is a 
 frequency distribution in which the mean, median, and mode exactly coincide  
and are symmetrical, so that 50 percent of cases lie to either side of the mean. In 
addition, the proportion of cases contained within any portion of the normal 
curve can be calculated mathematically, which is why the normal distribution is 
used in many inferential statistical procedures. Figure 15-3 illustrates a normal 
distribution.

Random errors tend to conform to a normal distribution, which is why many 
 statistical techniques have the assumption of normality, which says that errors 
follow a normal distribution. In fact, every statistical technique that we describe 
that has a continuous dependent variable has the assumption of normality. In 
Chapter 21, we talk about situations and tests you can use when you don’t have a 
normal distribution.
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Normal distributions are frequently used in statistics also because the Central  
Limit Theorem suggests that as sample size increases, the sampling distribution of 
the sample’s means approaches normality, regardless of the shape of the popula-
tion distribution. This extremely useful statistical axiom doesn’t require that the 
 original population distribution be normal; it states that the sample mean is 
 distributed normally, regardless of the distribution of the variable itself.

Working with Z-Scores
After you know the characteristics of the distribution of a variable, that is, the 
mean and standard deviation, you can calculate standardized scores, more com-
monly referred to as z-scores. Z-scores indicate the number of standard deviations 
a score is above or below the sample mean. You can use standardized scores to 
calculate the relative position of each value in a normal distribution because the 
mean of a standardized distribution is 0 and the standard deviation is 1. Z-scores 
are most often used in statistics to standardize variables of unequal scale units for 
statistical comparisons or for use in multivariate procedures.

Z-scores are calculated by subtracting the mean from the value of the observation 
in question and then dividing by the standard deviation for the sample:

Z = (score − mean) / standard deviation

For example, if you have a score of 75 out of 100 on a test of math ability, this 
information alone is not enough to tell how well you did in relation to others 

FIGURE 15-3: 
A normal 

distribution.
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taking the test. However, if you know that the mean score and the standard devia-
tion, you can calculate the proportion of people who achieved a score at least as 
high as you. For example, if the mean is 50 and the standard deviation is 10, you 
can calculate the following:

(75 − 50) / 10 = 2.5

You scored 2.5 standard deviations above the mean.

In Chapter 14, we show you how to use the descriptives procedure as an alternative 
to the frequencies procedure. Now you use the descriptives procedure to calculate 
z-scores.

To use the descriptives procedure, follow these steps:

1. From the main menu, choose File ➪   Open ➪   Data, and load the 
Merchandise.sav data file.

The file is not in the SPSS installation directory. Download it from the book’s 
companion website at www.dummies.com/go/spss4e.

2. Choose Analyze ➪   Descriptive Statistics ➪   Descriptives.

3. Select the Stereos, TVs, and Speakers variables and place them in the 
Variable(s) box.

4. Select the Save Standardized Values as Variables option, as shown in 
Figure 15-4.

5. Click OK.

SPSS runs the descriptives procedure and calculates the z-scores.

6. Switch over to the Data Editor window.

FIGURE 15-4: 
The Descriptives 

dialog used to 
calculate z-scores.

https://www.dummies.com/go/spss4e
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Figure 15-5 shows the three new standardized variables created at the end of the 
data file. Note that the screen was split to better illustrate the creation of the new 
variables. By default, the new variable names are the old variable names prefixed 
with the letter Z. You can save these variables in the file and use them in any 
 statistical procedure.

Focusing on the first row, note that the first person purchased 5 stereos, 8 TVs, 
and 86 speakers. Typically, you’d think that 86 is a large number, but when you 
look at the z-scores, the only value above average is for the number of TVs 
 purchased, not stereos purchased. Figure  15-6 shows the respective mean and 
standard deviation for each variable. Given that the mean number of TVs pur-
chased is .83 with a standard deviation of 2.23, someone buying 8 TVs is unusual.

FIGURE 15-5: 
The Stereos,  

TVs, and  
Speakers 
variables  

have been 
standardized.

FIGURE 15-6: 
The Descriptive 
Statistics table  

of stereos, TVs, 
and speakers.


