Simulação e Otimização

Capítulo 2: Problemas de otimização combinatória

Ano letivo 2023/2024

Problema do caixeiro viajante

- 1. Crie um enunciado para uma aplicação prática do problema do caixeiro viajante.
- 2. Considere a seguinte instância para o problema do caixeiro viajante.

	1	2	3	4
1	-	15	12	13
2	15	-	9	2
3	12	9	-	19
4	13	2	19	-

- (a) Resolva o problema utilizando a formulação MTZ.
- (b) Resolva o problema utilizando a formulação SCF.
- (c) Determine o valor da relaxação linear das formulações desenvolvidas nas alíneas anteriores e compareos.
- 3. Uma fábrica, localizada no nodo 0, necessita de matéria-prima e existem n fornecedores que a podem fornecer. O fornecedor $i \in \{1, \ldots, n\}$ tem w_i unidades de matéria-prima disponível e a fábrica tem uma necessidade de W unidades. A fábrica pretende determinar a rota que deve executar de forma a garantir que recolhe toda a matéria-prima que necessita ao mínimo custo de deslocação.
 - (a) Adapte uma formulação compacta para resolver o problema apresentado. <u>Nota:</u> Este problema é uma variante do problema do caixeiro viajante chamada *prize-collecting traveling salesman problem*.
 - (b) Considere a seguinte matriz de custos e valores de w_i .

	0	1	2	3	4
0	-	17	13	7	4
1	14	-	3	10	17
2	9	7	-	8	14
2 3 4	11	6	11	-	3
4	17	7	18	2	-
	211.	1	7	2	1

$w_i \mid 4$	7	2	4
--------------	---	---	---

- i. Considerando W=10, determine a solução ótima da instância apresentada.
- ii. Considere outros valores de W. Existe alguma relação entre o valor ótimo da instância e o valor de W? Se sim, indique qual.

4. Considere a seguinte matriz de custos relativa a uma instância do problema do caixeiro viajante.

	1	2	3	4
1	-	3	5	1
2	-	-	1	6
3	6	1	-	3
4	1	5	-	-

- (a) Obtenha a solução ótima do problema relaxado em que não se consideram as restrições de eliminação de subcircuitos.
- (b) Introduza na solução obtida na alínea anterior as restrições de eliminação de subcircuitos da formulação CC até encontrar a solução ótima do problema.
- 5. Considere a matriz de custos seguinte relativa a uma instância do problema do caixeiro viajante.

	1	2	3	4	5
1	-	3	4	1	2
2 3	3	-	8	4	3
3	4	8	-	5	2
4 5	1	4	5	-	3
5	2	3	2	3	-

- (a) Obtenha uma solução do problema relaxado em que não se consideram as restrições de eliminação de subcircuitos. Relacione o valor da solução obtida com o ótimo da instância.
- (b) Obtenha uma solução para o problema relaxado em que não se consideram as restrições de grau. Relacione o valor da solução obtida com o ótimo da instância.
- (c) Obtenha uma solução admissível para o problema utilizando a heurística de inserção de menor custo. Relacione o valor da solução obtida com o ótimo da instância.
- 6. Seja G = (V, E) um grafo não orientado, onde E é o conjunto das arestas em vez do conjunto de arcos. Considere as variáveis x_e , que tomam valor 1 se a aresta $e \in E$ é visitada na solução.
 - (a) Adapte a formulação CC para o caso simétrico.
 - (b) Determine a solução ótima da instância apresentada no exercício anterior utilizado a formulação desenvolvida na alínea anterior. Quais são as vantagens/desvantagens de usar a formulação simétrica comparativamente à assimétrica?
- 7. Considere a seguinte instância do problema do caixeiro viajante.

	C1	C2	C3	C4	C5	C6
C1	-	7	10	12	2	9
C2	7	-	11	14	8	1
C3	10	11	-	12	6	8
C4	12	14	12	-	7	9
C5	2	8	6	7	-	11
C6	9	1	8	9	11	-

- (a) Construa uma solução admissível utilizando a heurística do vizinho mais próximo.
- (b) Identifique um minorante relaxando as restrições de eliminação de subcircuitos. O que pode concluir sobre o valor ótimo da instância apresentada?

- (c) Introduza, na solução da alínea anterior, as restrições relaxadas da formulação CC até encontrar uma solução ótima da instância.
- 8. Considere a seguinte instância do problema do caixeiro viajante.

	1	2	3	4	5
1	-	3	7	6	2
2 3	4	-	11	9	6
3	2	6	-	1	5
4 5	5	5	3	-	4
5	6	2	7	6	-

- (a) Obtenha uma solução admissível utilizando a heurística de inserção de menor custo.
- (b) Identifique um minorante recorrendo à relaxação das restrições de saída de um nodo.
- (c) Introduza, na solução da alínea anterior as restrições relaxadas até encontrar uma solução ótima para a instância apresentada.
- 9. Considere a seguinte instância para o problema do caixeiro viajante:

	1	2	3	4	5
1	-	22	61	44	50
2	22	-	40	22	31
3	61	40	-	22	42
4	44	22	22	-	22
5	50	31	42	22	-

Obtenha uma solução admissível para a instância apresentada utilizando as seguintes heurísticas:

- (a) Heurística do vizinho mais próximo.
- (b) Heurística da inserção de menor custo.