Mathematical Economics - 1st Semester - 2023/2024 Exercises - Group II

1. Complete the following sentences:
(a) If $f(x, y)=\frac{3}{(x-1)^{2}+y^{2}}$ and $g: \mathbb{R} \backslash\{3\} \rightarrow \mathbb{R}$ is the map defined by $g(x)=2+\frac{5}{x-3}$, then

$$
\lim _{(x, y) \rightarrow(0,0)}[g \circ f(x, y)]=\ldots \ldots \ldots
$$

(b) The gradient vector of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $\left(2 x \cos y, 1-x^{2} \sin y\right)$. If $f(x, y)$ does not have constant terms in both components, then $f(1, \pi)=\ldots \ldots$
(c) With respect to the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we know that $\nabla f(3,2)=(0,0)$ and

$$
H_{f}(3,2)=\left(\begin{array}{cc}
\ldots \ldots . & 0 \\
0 & \ldots \ldots .
\end{array}\right) .
$$

Then, $f(3,2)$ is a local maximum of f.
(d) The point $x=5$ is a saddle-point of the map $f(x)=$ \qquad $x \in \mathbb{R}$.
2. Classify the critical points of the following functions,
(a) $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}+2 x y+2 x z$ on \mathbb{R}^{3}
(b) $f(x, y, z, w)=20 y+48 z+6 w+8 x y-4 x^{2}-12 z^{2}-w^{2}-4 y^{3}$ on \mathbb{R}^{4}
(c) $f(x, y, z)=z \log \left(x^{2}+y^{2}+z^{2}\right)$ on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$
3. Consider the map f defined in \mathbb{R}^{2} as

$$
f(x, y)=x^{3}+y^{3}+x^{3} y^{3} .
$$

(a) Compute $f(x, 0), x \in \mathbb{R}$.
(b) Identify and classify the critical points of f.
4. Find and classify the critical points of $f(x, y)=e^{x^{2}-a y^{2}}$ as function of the parameter $a \in \mathbb{R} \backslash\{0\}$.
5. Consider the map $f(x, y)=(y-\alpha) x e^{x}$, where $\alpha \in \mathbb{R} \backslash\{0\}$.
(a) If $(0,1)$ is a critical point of f, find α and classify the critical point.
(b) Show that f is not limited.
6. Consider the map $f(x, y)=x^{2} e^{y^{3}-3 y}$.
(a) Find the maximal domain of f.
(b) Find and classify all critical points of f.
(c) Show that f attains its global minimum at points of the form $(0, b), b \in \mathbb{R}$.
(d) Show that f is not limited.
(e) Show that f has a maximum and a minimum on

$$
B=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 5\right\} .
$$

7. Consider the following function defined on \mathbb{R}^{2} :

$$
f(x, y)=(1+y)^{3} x^{2}+y^{2}
$$

Show that f has a unique critical point $\left(x^{*}, y^{*}\right)$ which is a local minimizer. Is $\left(x^{*}, y^{*}\right)$ a global minimizer?
8. Determine the maximum and minimum distance to the origin of the points in the ellipse defined by $5 x^{2}+6 x y+5 y^{2}=8$.
9. Determine the point in the ellipse $x^{2}+2 x y+2 y^{2}=2$ with smallest x coordinate.
10. Find and classify all critical points of

$$
f(x, y)=8 y^{2}-4 x^{2}(y-1) .
$$

Among the critical points, is there some global one?
11. Find the extrema of $f(x, y)=x$ when restricted to the set $y^{2}+x^{4}-x^{3}=0$.
12. Find the extrema of $f(x, y)=x-2 y+2 z$ when restricted to

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\} .
$$

13. Determine the global extrema of f over the set M, where:
(a) $f(x, y, z)=x-2 y+2 z$ and $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$
(b) $f(x, y, z)=x^{2}+2 x y+y^{2}$ and $M=\left\{(x, y, z) \in \mathbb{R}^{3}:(x-3)^{2}+y^{2}=2\right\}$
14. Determine the global extrema of f over the set M, where:
(a) $f(x, y, z)=x-2 y+2 z$ and $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\}$
(b) $f(x, y, z)=x^{2}+2 x y+y^{2}$ and $M=\left\{(x, y, z) \in \mathbb{R}^{3}:(x-3)^{2}+y^{2} \leq 2\right\}$
15. Determine if the following functions are (strictly) convex/concave:
(a) $f(x, y)=2 x-y-x^{2}+2 x y-y^{2}$ on \mathbb{R}^{2}.
(b) $f(x, y)=x^{a} y^{b}$ on \mathbb{R}_{+}^{2} and $a+b \leq 1$ with $a, b \geq 0$.
16. Find the largest domain $D \subset \mathbb{R}^{2}$ on which the following function is concave,

$$
f(x, y)=x^{2}-y^{2}-x y-x^{3}
$$

17. Use Lagrange convexity's Theorem to solve the following optimization problems:
(a)

$$
\begin{aligned}
& \text { maximize } 2 x+y \\
& \text { subject to } x^{2}+y^{2}=1
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \operatorname{minimize} x^{2} y^{2} \\
& \text { subject to }(1 / x)^{2}+(1 / y)^{2}=1
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \operatorname{maximize} x+4 y+z \\
& \text { subject to } x+2 y+3 z=0 \\
& x^{2}+y^{2}+z^{2}=42
\end{aligned}
$$

(d)

$$
\begin{aligned}
\operatorname{minimize} & x+4 z \\
\text { subject to } & x-y+z=2 \\
& x^{2}+y^{2}=1
\end{aligned}
$$

18. Find the local optimal points of f on D where:
(a)

$$
\begin{aligned}
f(x, y) & =\log (x y) \\
D & =\left\{(x, y) \in \mathbb{R}^{2}:(1 / x)^{2}+(1 / y)^{2}=1\right\}
\end{aligned}
$$

(b)

$$
\begin{aligned}
f(x, y) & =x+y \\
D & =\left\{(x, y) \in \mathbb{R}^{2}: x y=16\right\}
\end{aligned}
$$

(c)

$$
\begin{aligned}
f(x, y, z) & =x^{2}-z^{2} \\
D & =\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x+z=a, x-y=b\right\}
\end{aligned}
$$

19. Use Kuhn-Tucker Theorem to solve the following optimization problems:
(a)

$$
\begin{aligned}
& \operatorname{maximize} x^{2}+2 y \\
& \text { subject to } x^{2}+y^{2} \leq 5 \\
& y \geq 0
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{maximize} & \frac{1}{2} x-y \\
\text { subject to } & x+e^{-x}+z^{2} \leq y \\
& x \geq 0
\end{aligned}
$$

(c)

$$
\begin{array}{cl}
\operatorname{minimize} & 2 x^{2}+3 y^{2} \\
\text { subject to } & x+2 y \leq 11 \\
& x \geq 0 \\
y \geq 0
\end{array}
$$

20.
