

Estatística II

Licenciatura em Gestão 2.º Ano/1.º Semestre 2023/2024

Aulas Teóricas N.ºs 8 e 9 (Semana 5)

Docente: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

Conteúdos Programáticos

Aulas Teóricas (Semanas 1 a 5)

• Capítulo 1: Estimação

Aulas Teóricas (Semanas 5 a 7)

• Capítulo 2: Testes de Hipóteses

Aulas Teóricas (Semanas 7 a 9)

• Capítulo 3: Modelo de Regressão Linear Aulas Teóricas (Semanas 10 a 13)

• Capítulo 4: Complementos ao Modelo de Regressão Linear

Material didático: Exercícios do Livro Murteira et al (2015), Formulário e Tabelas Estatísticas

Bibliografia: B. Murteira, C. Silva Ribeiro, J. Andrade e Silva, C. Pimenta e F. Pimenta; *Introdução à Estatística*, 2ª ed., Escolar Editora, 2015.

https://cas.iseg.ulisboa.pt

4º semana (10/10 e 12/10)

T06 - Intervalos de confiança

Introdução. Método da variável fulcral. Aplicação a universos normais: média e variância. Exemplos

T07 - Estimação por intervalos

Método da variável fulcral: Aplicação a universos normais (2 amostras) para a estimação da diferença de média e rácio de variâncias. Exemplos.

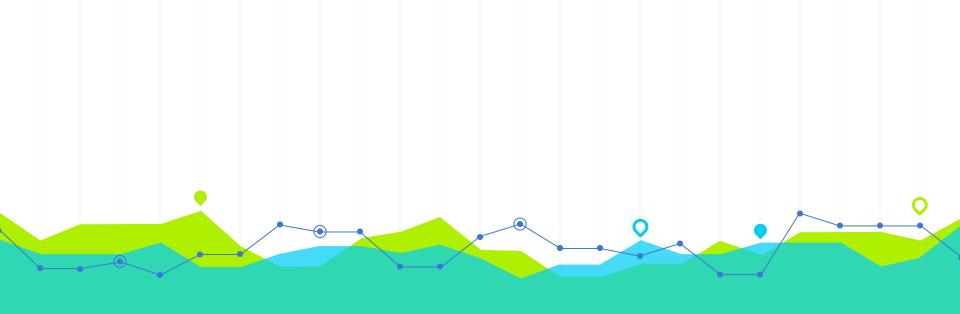
5ª semana (17/10 e 19/10)

T08 - Estimação por intervalos

Intervalos de confiança para grandes amostras. Resultado geral. Aplicação a universos de Bernoulli (média e diferença de médias), de Poisson e com distribuição exponencial. Exemplos

T09 - Teste de hipóteses

Introdução. Teste de hipótese simples contra hipótese simples. Probabilidades associadas aos 2 tipos de erros. Potência do teste. Lema de Neyman-Pearson. Exemplo.



Intervalo de Confiança para a Variância σ^2

Intervalo de Confiança para σ^2

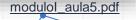
Intervalo a $(1 - \alpha) \times 100\%$ de confiança para σ^2 numa população normal (n-1) s² (n-1) s²

$$\left| \frac{(n-1) \, S^2}{\chi^2_{n-1; \, 1-\frac{\alpha}{2}}}; \frac{(n-1) \, S^2}{\chi^2_{n-1; \frac{\alpha}{2}}} \right|.$$

$$\frac{(n-1) s^{2}}{\chi^{2}_{1-\alpha/2,(n-1)}} < \sigma^{2} < \frac{(n-1) s^{2}}{\chi^{2}_{\alpha/2,(n-1)}}$$

Variância corrigida

S'2 =
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$



Intervalo de Confiança para σ^2

Para obter o Intervalo de Confiança para σ^2

Variável usada	Condições	Distribuição
$\frac{(n-1)}{\sigma^2}$ S ²	$X_i \frown N(\mu, \sigma)$	$\chi^2_{(n-1)}$
$S'^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$	$i=1,2,\cdots,n$	

Definição da distribuição χ^2

Se Z_1, Z_2, \dots, Z_n são v.'s a.'s N(0, 1) independentes

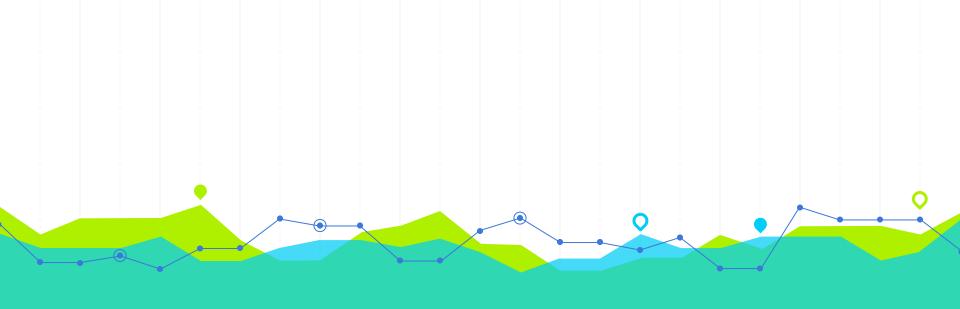
a v.a.
$$X = Z_1^2 + \cdots + Z_n^2$$
 é tal que $X \frown \chi_{(n)}^2$

Tem-se
$$E[X] = n$$
; $Var[X] = 2n$

IC para σ^2 : Formulário

• POPULAÇÕES NORMAIS

Média	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$\frac{\overline{X} - \mu}{S'/\sqrt{n}} \sim t(n-1)$
Diferença de médias	$\frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}} \sim N(0,1)$	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1'^2}{m} + \frac{S_2'^2}{n}}} \sim t(v)$
	$T = \frac{\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{m} + \frac{1}{n}}}}{\sqrt{\frac{(m-1)S_1'^2 + (n-1)S_2'^2}{m+n-2}}} \sim t(m+n-2)$	onde V é o maior inteiro contido em r , $r = \frac{\left(\frac{s_1'^2}{m} + \frac{s_2'^2}{n}\right)^2}{\frac{1}{m-1}\left(\frac{s_1'^2}{m}\right)^2 + \frac{1}{n-1}\left(\frac{s_2'^2}{n}\right)^2}$
Variância	σ^2 σ^2 χ (iii 1)	ariância corrigida
Relação de variâncias	$\frac{S_1'^2}{S_2'^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F(m-1, n-1)$	$2^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$



Intervalo de Confiança para a Variância σ²: Exercícios

2

Exercício Suplementar que não consta do livro Murteira et al (2015)

7.2 Admita que a densidade de construção, *X*, num projecto de urbanização tem distribuição normal. Uma amostra aleatória de 50 lotes desse projecto conduziu a

$$\sum_{i=1}^{50} x_i = 227.2 \; ; \; \sum_{i=1}^{50} x_i^2 = 2242.6$$

Assumindo que o desvio padrão de *X* é igual a 4, construa um intervalo de confiança a 95% para a densidade média de construção. Que dimensão deveria ter a amostra para que a amplitude desse intervalo fosse reduzida a metade?

Exercício 7.2: IC para σ^2

Slides Professora Claúdia Nunes

Cálculo dos Quantis da Distribuição Qui-Quadrado de Probabilidade 1- $\alpha/2$ e $\alpha/2$ com n-1 g.l. s

Nível de confiança (1-α=0,90)

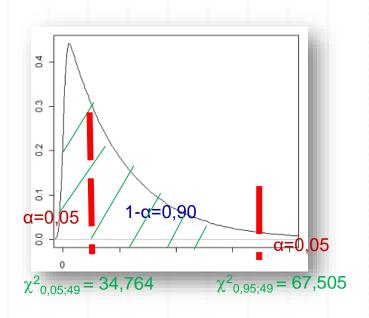
Nível de significância (α=0,10)

Área total é igual a 1

O nível de confiança é 1- α = 0,90 \Leftrightarrow α = 0,10, então tem-se 1- α /2 = 0,95 e α /2 = 0,05

Logo, pretende-se calcular o quantil da distribuição Qui-Quadrado de probabilidade 0,05 $\chi^2_{0.05:49} = \chi^{2^*}_{0.95:49} = 34,764$ (ver tabela a seguir)

Logo, pretende-se calcular o quantil da distribuição Qui-Quadrado de probabilidade 0,95 $\chi^2_{0.95:49} = \chi^2_{0.05:49} = 67,505$ (ver tabela a seguir)



Cálculo dos Quantis da Distribuição Qui-Quadrado de Probabilidade 1- $\alpha/2$ e $\alpha/2$ com n-1 g.l. s

Tabela do Qui-Quadrado

$\chi_{n,\varepsilon}^2: P(X > \chi_{n,\varepsilon}^2) =$	
$\gamma_{-\alpha}: P(X > \gamma_{-\alpha}) =$	E

				_	_					_					
	3	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005	.001
	n														
	1	.000	.000	.001	.004	.016	.102	.455	1.323	2.706	3.841	5.024	6.635	7.879	10.827
	2	.010	.020	.051	.103	.211	.575	1.386	2.773	4.605	5.991	7.378	9.210	10.597	13.815
	3	.072	.115	.216	.352	.584	1.213	2.366	4.108	6.251	7.815	9.348	11.345	12.838	16.266
		.207	.297	.484	.711	1.064	1.923	3.357	5.385	7.779	9.488	11.143	13.277		18.466
	4													14.860	
	5	.412	.554	.831	1.145	1.610	2.675	4.351	6.626	9.236	11.070	12.832	15.086	16.750	20.515
н	6	.676	.872	1.237	1.635	2.204	3.455	5.348	7.841	10.645	12.592	14.449	16.812	18.548	22.457
н	7	.989	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.017	14.067	16.013	18.475	20.278	24.321
н	8	1.344	1.647	2.180	2.733	3.490	5.071	7.344	10.219	13.362	15.507	17.535	20.090	21.955	26.124
н	9	1.735	2.088	2.700	3.325	4.168	5.899	8.343	11.389	14.684	16.919	19.023	21.666	23.589	27.877
J	10	2.156	2.558	3.247	3.940	4.865	6.737	9.342	12.549	15.987	18.307	20.483	23.209	25.188	29.588
		2 (02	2.052	2.016	4.575	5.578	7.584	10.241	12.701	17.275	10.675	21,920	24.725	26.757	21.264
	11	2.603	3.053	3.816				10.341	13.701		19.675			26.757	31.264
	12	3.074	3.571	4.404	5.226	6.304	8.438	11.340	14.845	18.549	21.026	23.337	26.217	28.300	32.909
	13	3.565	4.107	5.009	5.892	7.041	9.299	12.340	15.984	19.812	22.362	24.736	27.688	29.819	34.527
	14	4.075	4.660	5.629	6.571	7.790	10.165	13.339	17.117	21.064	23.685	26.119	29.141	31.319	36.124
	15	4.601	5.229	6.262	7.261	8.547	11.037	14.339	18.245	22.307	24.996	27.488	30.578	32.801	37.698
	16	5.142	5.812	6.908	7.962	9.312	11.912	15.338	19.369	23.542	26.296	28.845	32.000	34.267	39.252
	17	5.697	6.408	7.564	8.672	10.085	12.792	16.338	20.489	24.769	27.587	30.191	33.409	35.718	40.791
	18	6.265	7.015	8.231	9.390	10.865	13.675	17.338	21.605	25.989	28.869	31.526	34.805	37.156	42.312
	19	6.844	7.633	8.907	10.117	11.651	14.562	18.338	22.718	27.204	30.144	32.852	36.191	38.582	43.819
	20	7.434	8.260	9.591	10.851	12.443	15.452	19.337	23.828	28.412	31.410	34.170	37.566	39.997	45.314
				40.000							22.581	25.150			16 806
	21	8.034	8.897	10.283	11.591	13.240	16.344	20.337	24.935	29.615	32.671	35.479	38.932	41.401	46.796
	22	8.643	9.542	10.982	12.338	14.041	17.240	21.337	26.039	30.813	33.924	36.781	40.289	42.796	48.268
	23	9.260	10.196	11.689	13.091	14.848	18.137	22.337	27.141	32.007	35.172	38.076	41.638	44.181	49.728
	24	9.886	10.856	12.401	13.848	15.659	19.037	23.337	28.241	33.196	36.415	39.364	42.980	45.558	51.179
	25	10.520	11.524	13.120	14.611	16.473	19.939	24.337	29.339	34.382	37.652	40.646	44.314	46.928	52.619
	26	11.160	12.198	13.844	15.379	17.292	20.843	25.336	30.435	35.563	38.885	41.923	45.642	48.290	54.051
	27	11.808	12.878	14.573	16.151	18.114	21.749	26.336	31.528	36.741	40.113	43.195	46.963	49.645	55.475
	28	12.461	13.565	15.308	16.928	18.939	22.657	27.336	32.620	37.916	41.337	44.461	48.278	50.994	56.892
	29	13.121	14.256	16.047	17.708	19.768	23.567	28.336	33.711	39.087	42.557	45.722	49.588	52.335	58.301
	30	13.787	14.953	16.791	18.493	20.599	24.478	29.336	34.800	40.256	43.773	46.979	50.892	53.672	59.702
	40	20.707	22.164	24.433	26.500	29.051	22.660	39.335	45.616	£1 00£	55.758	59.342	63.691	66.766	73.403
	50 50	20.707 27.991	29.707	32.357	34.764	37.689	33.660 42.942	49.335	45.616 56.334	51.805	67.505		76.154	66.766 79.490	86.660
	60						52.294								
	70	35.534 43.275	37.485 45.442	40.482 48.758	43.188 51.739	46.459	61.698	59.335 69.334	66.981	74.397 85.527	79.082 90.531	83.298	88.379 100.425	91.952	99.608
	80	51.172	53.540	57.153	60.391	55.329 64.278	71.145	79.334	77.577 88.130				112.329		
	80	31.172	33.340	37.133	00.391	04.278	/1.145	19.554	88.130	90.5/8	101.8/9	100.029	112.529	110.521	124.839
	90	59.196	61.754	65.647	69.126	73.291	80.625	89.334	98.650	107.565	113.145	118.136	124.116	128.299	137.208
	100	67.328	70.065	74.222	77.929	82.358	90.133	99.334	109.141	118.498	124.342	129.561	135.807	140.170	149.449

$$\chi^{2}_{0,05;49} = \chi^{2^{*}}_{0,95;49} = 34,764$$
 $\chi^{2}_{0,95;49} = \chi^{2^{*}}_{0,05;49} = 67,505$

$$\left] \frac{(n-1) \, s^2}{\chi^2_{n-1; \, 1-\frac{\alpha}{2}}}; \frac{(n-1) \, s^2}{\chi^2_{n-1; \frac{\alpha}{2}}} \right[.$$

 $IC_{90\%}(\sigma^2)$: (7,928; 34,811)

Exercício 7.2: IC para σ^2

NOTA: V. fluel: 4952 ~ X2 (49)

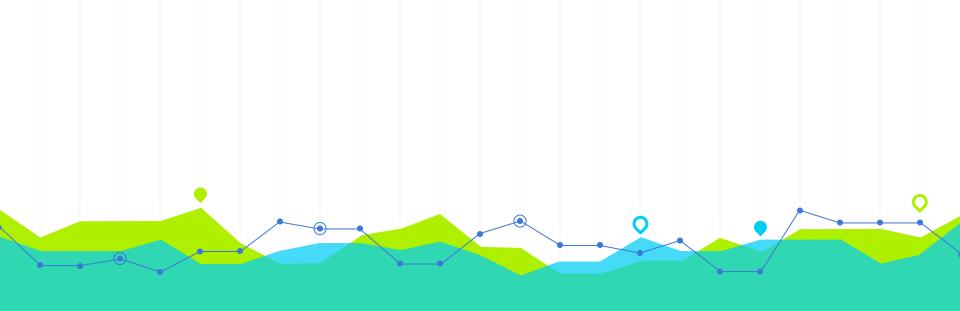
V. fluel: 49, 24.698 ~ X2(49)

- Dispretaçõe: I. (. A (B)=] L(X..., K); U(X..., K)

 Signfici que se recollandos mutios comostros e

 Colledomos, p/caclo uma cletos o comesporchete
 intendo latro em cerco de (1-2) 100 %, os
 intendos assim obolidos contez o verdocheiro
 valor do parâneiro descontecido o.
- 3 A amplitude do intendo é tauto neson, en gerl, que maion for a dihest de amositia.

Slides Professora Claúdia Nunes



Intervalo de Confiança para a Diferença de Valores Médios μ_1 - μ_2

Intervalo de Confiança para μ_1 - μ_2 : Variâncias Conhecidas

Portanto, quando as populações são Normais com variâncias conhecidas, o I. C. para $\mu_1 - \mu_2$ com $100(1-\alpha)\%$ de confiança é dado por:

$$\left[(\overline{X}_1 - \overline{X}_2) - z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}; (\overline{X}_1 - \overline{X}_2) + z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}. \right]$$

ProbabilidadesEstatistica 2019 (uevora.pt)

Intervalo de Confiança para μ_1 - μ_2 : Variâncias Desconhecidas e Iguais

Portanto, quando as populações são Normais com variâncias desconhecidas, mas iguais, o **I. C. para** $\mu_1 - \mu_2$ com $100(1-\alpha)\%$ de confiança é dado por:

$$\Big] \Big(\overline{X}_1 - \overline{X}_2 \Big) - t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S^*; \Big(\overline{X}_1 - \overline{X}_2 \Big) + t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S^* \Big[.$$

ProbabilidadesEstatistica_2019 (uevora.pt)

$$S^* = \sqrt{\frac{(n_1 - 1) \sin^2 + (n_2 - 1) \sin^2 \frac{1}{2}}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Variâncias corrigidas

$$S'^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Intervalo de Confiança para μ_1 - μ_2 : Variâncias Desconhecidas e Diferentes

Portanto, quando as populações são Normais com variâncias desconhecidas,

, o I. C. para μ_1 –

 $\mu_2 \operatorname{com} 100(1-\alpha)\%$ de confiança é dado por:

$$\left| (\overline{X}_1 - \overline{X}_2) - t_{v; 1 - \frac{\alpha}{2}} \sqrt{\frac{s_{1^2}}{n_1} + \frac{s_{2^2}}{n_2}}; (\overline{X}_1 - \overline{X}_2) + t_{v; 1 - \frac{\alpha}{2}} \sqrt{\frac{s_{1^2}}{n_1} + \frac{s_{2^2}}{n_2}} \right|.$$

ProbabilidadesEstatistica_2019 (uevora.pt)

Variâncias corrigidas

$$v = \left[\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2} \right].$$

Variâncias corrigidas

$$S'^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Intervalo de Confiança para μ_1 - μ_2 e $n \ge 30$: **Variâncias Conhecidas e Desconhecidas**

• Parâmetro: $\mu_1 - \mu_2$ (populações quaisquer independentes com variâncias finitas)

Variâncias Conhecidas V. F.

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}} \sim N(0,1)$$

Variâncias Desconhecidas

$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{{S'_1}^2}{m} + \frac{{S'_2}^2}{n}}} \sim N(0,1).$$

I. C.

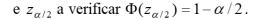
$$(\overline{x}_1 - \overline{x}_2 - Z_{\alpha/2}\sigma^*, \overline{x}_1 - \overline{x}_2 + Z_{\alpha/2}\sigma^*)$$

ou
$$(\bar{x}_1 - \bar{x}_2 - z_{\alpha/2}s^*, \bar{x}_1 - \bar{x}_2 + z_{\alpha/2}s^*)$$

$$com \qquad \sigma^* = \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}$$

$$s^* = \sqrt{\frac{{s_1'}^2}{m} + \frac{{s_2'}^2}{n}}$$

Murteira et al (2015)



IC para μ_1 - μ_2 : Formulário

Variância corrigida

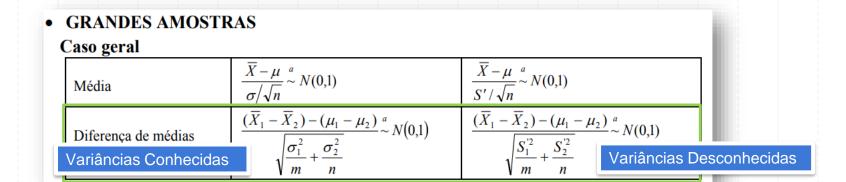
S'2 =
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

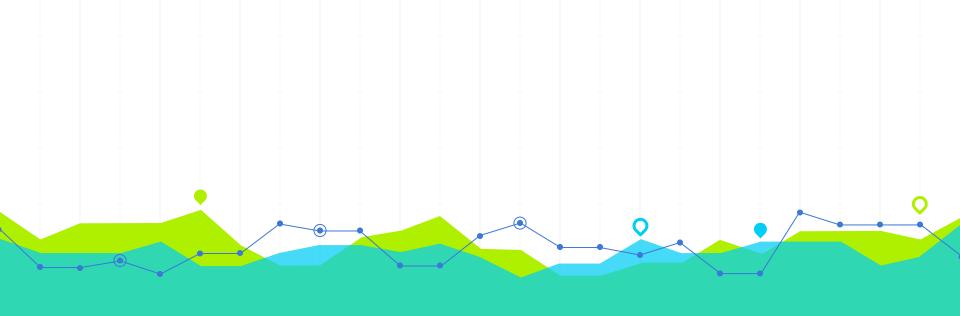
• POPULAÇÕES NORMAIS

Relação de variâncias

_	TOTULAÇÕES NOK	MAIS	
	Média	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$\frac{\overline{X} - \mu}{S'/\sqrt{n}} \sim t(n-1)$
	Diferença de médias	$\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \sim N(0,1)$ Variâncias Conhecidas	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1'^2}{m} + \frac{S_2'^2}{n}}} \sim t(v)$
		- - -	onde ν é o maior inteiro contido em r ,
Variâncias	Desconhecidas e Iguai	$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{1}{1} + \frac{1}{1}}}$	$\left(\frac{{s_1'}^2}{m} + \frac{{s_2'}^2}{n}\right)^2$
		$T = \frac{\frac{X_1 - X_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{m} + \frac{1}{n}}}}{\sqrt{\frac{(m-1)S_1'^2 + (n-1)S_2'^2}{m+n-2}}} \sim t(m+n-2)$	$r = \frac{1}{\frac{1}{m-1} \left(\frac{s_1'^2}{m}\right)^2 + \frac{1}{n-1} \left(\frac{s_2'^2}{n}\right)^2}$
	Variância	$\frac{nS^{2}}{\sigma^{2}} = \frac{(n-1)S'^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$	Variâncias Desconhecidas e Diferente

IC para μ_1 - μ_2 : Formulário





Intervalo de Confiança para a Diferença de Valores Médios μ_1 - μ_2 : Exercícios

Exercício Suplementar que não consta do livro Murteira et al (2015)

Havendo indícios de que o esquema de avaliação e as classificações finais atribuídas diferem fortemente entre duas escolas, decidiu-se comprovar estatisticamente esta hipótese. Os desvios-padrão são conhecidos sendo 2,1 valores na escola A e 1,8 valores na escola B. Assim, retirou-se uma amostra de testes de alunos em cada uma das escolas que levaram aos seguintes resultados:

Escola	n_i	\overline{x}_i
Α	41	12,9
В	31	14,7

Recorrendo a um intervalo de confiança a 90%, diga se há diferenças entre as classificações médias das escolas A e B. Justifique.

ProbabilidadesEstatistica_2019 (uevora.pt)

Exercício: IC para μ_1 - μ_2 (Variâncias Conhecidas)

Sejam:

- X_1 a v.a. que representa a classificação final dos alunos na escola A,
- X_2 a v.a. que representa a classificação final dos alunos na escola B, com $\sigma_1 = 2.1$ e $\sigma_2 = 1.8$.

Como as amostras são grandes, o I. C. para $\mu_1 - \mu_2$ a 90% é dado por:

$$\left[(\overline{X}_1 - \overline{X}_2) - z_{0.95} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}; (\overline{X}_1 - \overline{X}_2) + z_{0.95} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right].$$

Substituindo pelos valores conhecidos, sendo $z_{0.95} = 1,645$, obtém-se

$$\left[(12,9 - 14,7) \pm 1,645 \sqrt{\frac{2,1^2}{41} + \frac{1,8^2}{31}} \right] = \left[-2,558; -1,043 \right].$$
ProbabilidadesEstatistica_2019 (uevora.pr

Com 90% de confiança, existe evidência de que as classificações médias são diferentes (0 não está no intervalo). Como ambos os limites do intervalo são negativos então significa que $\mu_1 < \mu_2$, ou seja, a classificação média é superior na escola B do que na escola A[†].

Exercício Suplementar que não consta do livro Murteira et al (2015)

Um determinado método de análise permite determinar o conteúdo de enxofre no petróleo bruto. Os ensaios efetuados em 10 e 8 amostras aleatórias de 1 kg de petróleo bruto, provenientes de furos pertencentes respetivamente aos campos A e B, revelaram os seguintes resultados (em gramas):

Campo A:	111	114	105	112	107	109	112	110	110	106
Campo B:	109	103	101	105	106	108	110	104		

Construa um intervalo de confiança a 90% para a diferença entre os valores esperados da quantidade de enxofre por quilograma de petróleo proveniente de cada campo, considerando que populações são Normais, com variâncias desconhecidas mas iguais.

ProbabilidadesEstatistica_2019 (uevora.pt)

Exercício: IC para μ_1 - μ_2 (Variâncias Desconhecidas e Iguais)

Sejam:

- X_1 a v.a. que representa a quantidade de enxofre por quilograma de petróleo do campo A,
- X_2 a v.a. que representa a quantidade de enxofre por quilograma de petróleo do campo B, com $X_1 \sim N(\mu_1 = ?; \sigma_1 = ?)$ e $X_2 \sim N(\mu_2 = ?; \sigma_2 = ?)$, mas $\sigma_1 = \sigma_2$.

$$n_1 = 10$$
, $\overline{x}_1 = 109,6$ e $s_1 = 2,875$, $n_2 = 8$, $\overline{x}_2 = 105,75$ e $s_2 = 3,105$.

O I. C. para $\mu_1 - \mu_2$ a 90% é dado por:

$$\begin{split} \left] \left(\overline{X}_1 - \overline{X}_2 \right) - t_{n_1 + n_2 - 2; \; 0,95} S^* \; ; \left(\overline{X}_1 - \overline{X}_2 \right) + t_{n_1 + n_2 - 2; \; 0,95} S^* \right[, \\ & \quad \text{com} \; S^* = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}. \end{split}$$

Variâncias corrigidas

$$S'^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

ProbabilidadesEstatistica 2019 (uevora.pt)

Exercício: IC para μ_1 - μ_2 (Variâncias Desconhecidas e Iguais)

Substituindo pelos valores conhecidos,

$$s^* = \sqrt{\frac{(10-1)2,875^2 + (8-1)3,105^2}{10+8-2}} \sqrt{\frac{1}{10} + \frac{1}{8}} = 1,413$$

e como $t_{16:0.95} = 1,746$, obtém-se

$$[(109,6-105,75) \pm 1,746 \times 1,413; [=]1,384; 6,316[.$$

Com 90% de confiança, existe evidência de que o teor médio de enxofre nos campos A e B é diferente (0 não está no intervalo). Uma vez que ambos os limites são positivos, então significa que $\mu_1 > \mu_2$, ou seja, o conteúdo médio de enxofre por quilograma de petróleo extraído do campo A é superior ao registado no campo B † .

ProbabilidadesEstatistica_2019 (uevora.pt)

Exercício Suplementar que não consta do livro Murteira et al (2015)

Para um estudo sobre a caracterização da altura da população portuguesa, foi recolhida uma amostra de 1861 pessoas, com as seguintes características:

Group Statistics

	Sexo	N	Mean	Std. Deviation
Altura	Masculino	853	168,46	7,617
	Feminino	1007	158,48	6,652

Supondo a normalidade das distribuições e assumindo que as variâncias populacionais são desconhecidas e diferentes, verifique se se pode considerar que as alturas médias dos homens e das mulheres são iguais, com 95% de confiança.

ProbabilidadesEstatistica_2019 (uevora.pt)

Exercício: IC para μ_1 - μ_2 (Variâncias Desconhecidas e Diferentes)

Sejam:

- X_1 a v.a. que representa a altura dos indivíduos do sexo masculino,
- X_2 a v.a. que representa a altura dos indivíduos do sexo feminino,

$$\operatorname{com} X_1 \sim N(\mu_1 =?\,;\, \sigma_1 =?\,) \ \text{e} \ X_2 \sim N(\mu_2 =?\,;\, \sigma_2 =?\,),\, \operatorname{mas}\, \sigma_1^2 \neq \sigma_2^2.$$

$$n_1 = 853$$
, $\overline{x}_1 = 168,46$ e $s_1 = 7,617$, $n_2 = 1007$, $\overline{x}_2 = 158,48$ e $s_2 = 6,652$.

O I. C. para $\mu_1 - \mu_2$ a 95% é dado por:

$$\left[(\overline{X}_1 - \overline{X}_2) - t_{v; 0,975} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}; (\overline{X}_1 - \overline{X}_2) + t_{v; 0,975} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \right]$$

$$S'^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Variâncias corrigidas
$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left[\frac{1}{n_{1} - 1} \left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \frac{1}{n_{2} - 1} \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}\right]}.$$

Exercício: IC para μ_1 - μ_2 (Variâncias Desconhecidas e Diferentes)

Substituindo pelos valores conhecidos,

$$v = \left[\frac{\left(\frac{7,617^2}{853} + \frac{6,652^2}{1007} \right)^2}{\frac{1}{853 - 1} \left(\frac{7,617^2}{853} \right)^2 + \frac{1}{1007 - 1} \left(\frac{6,652^2}{1007} \right)^2} \right] = [1705,6] = 1705,$$

e como $t_{1705; 0,975} = 1,96$, obtém-se

$$\left| (168,46 - 158,48) \pm 1,96 \sqrt{\frac{7,617^2}{853} + \frac{6,652^2}{1007}} \right| =]9,32; \ 10,64[.$$

Com 90% de confiança, existe diferença significativa entre as médias das alturas dos homens e das mulheres (0 não está contido do I. C. a 95%). Como ambos os limites do intervalo são positivos então significa que $\mu_H > \mu_M$, ou seja, a altura média dos homens é superior à altura média das mulheres.

Obrigada!

Questões?