Mathematical Economics - 1st Semester - 2023/2024

Exercises - Group III

1. Complete the following sentences:
(a) The map $y(x)=\frac{1}{x}, x \in \mathbb{R}^{-}$, is a solution of the IVP $\left\{\begin{array}{l}\dot{y}=\ldots \ldots \\ y(\ldots \ldots)=-2\end{array}\right.$
(b) The
law (associated to a given population of size p that depends on the time $t \geq 0$) states that

$$
p^{\prime}=k p, \quad k \in \mathbb{R} \text { (parameter). }
$$

If $p(0)=10$ and $k=-1$, then $p(10)=$ \qquad and $\lim _{t \rightarrow+\infty} p(t)=$ \qquad
(c) The graph of the solution of the IVP $\left\{\begin{array}{l}y^{\prime}=3 x \\ y(0)=2\end{array}\right.$ is (y is a function of x)
(d) The logistic law (associated to a given population of size p that depends on the time $t \geq 0$) states that

$$
p^{\prime}=a p-b p^{2}, \quad a, b \in \mathbb{R}
$$

where a / b may be seen as the \qquad .of the population. If $p(0)=1000, a=1$ and $b=0.002$, then the solution of the previous differential equation is monotonic \qquad
If $a=3, b=0$ and $p(0)=1000$, the solution of the ODE is
(e) The graph of the solution of the IVP $\left\{\begin{array}{l}y^{\prime \prime}-4 y=0 \\ y^{\prime}(0)=0 \\ y(0)=2\end{array}\right.$ is (y is a function of x)
2. Find the general solution of (x is a function of t)
(a) $x^{\prime}+2 x=8$
(b) $x^{\prime}+3 x=e^{t}$
(c) $x^{\prime}+2 t x=e^{-t^{2}}$
(d) $x^{\prime}+2 t x=4 t$
(e) $4 t^{2} x^{\prime}+8 t x=-12 \sin (3 t)$
3. For each 1st order linear ODE of previous Exercise solve the IVP with the initial condition
(a) $x(0)=0$
(b) $x(0)=-1$
(c) $x(0)=1$
(d) $x(0)=-2$
4. Solve the following IVP: $\left\{\begin{array}{l}y^{\prime}+2 x y=x \\ y(0)=3 / 2\end{array}\right.$ and trace the graphs of the integrant factor and the solution.
5. Consider the following model of economic growth in a developing country,

$$
X(t)=\sigma K(t), \quad K^{\prime}(t)=\alpha X(t)+H(t)
$$

where $X(t)$ is the total domestic product per year, $K(t)$ the capital stock, $H(t)$ the net inflow of foreign investment per year, all measured at time instant t. Assume that $H(t)=H_{0} e^{\mu t}$.
(a) Derive a differential equation for $K(t)$ and find the solution given that $K(0)=$ K_{0}.
(b) If the size of the population $N(t)=N_{0} e^{\rho t}$, compute $x(t)=X(t) / N(t)$ which is the domestic product per capita.
(c) Assuming that $\mu=\rho$ and $\rho>\alpha \sigma$ compute $\lim _{t \rightarrow+\infty} x(t)$.
6. Find the solutions of the following IVP
(a) $t x^{\prime}=(1-t) x$ with $x(1)=1 / e$
(b) $x^{\prime}=t / x$ with $x(\sqrt{2})=1$
(c) $x^{\prime}=(x-1)(x+1)$ with $x(0)=0$
(d) $y^{\prime}=x y-x$ where y is a function of x
(e) $e^{x^{4}} y y^{\prime}=x^{3}\left(9+y^{4}\right)$ where y is a function of x
7. Solve the following IVP: $\left\{\begin{array}{l}y^{\prime}=x^{2} e^{2 y} \\ y(0)=0\end{array}\right.$ and indicate the maximal domain of definition.
8. Consider the following IVP $\left\{\begin{array}{l}y^{\prime}=x^{2}(y-2)^{4} \\ y(0)=a \in \mathbb{R}\end{array}\right.$.

Solve the IVP for (i) $a=2$ and (ii) $a=0$.
9. Determine the maximal interval of existence for the solutions of the following ODEs:
(a) $x^{\prime}=e^{-x}$
(b) $x^{\prime}=\frac{1}{2 x}$
10. Determine the phase portrait of the follows ODEs and classify the equilibria.
(a) $x^{\prime}=a x$, with $a \neq 0$
(b) $x^{\prime}=x-x^{3}$
(c) $x^{\prime}=b+x$ with $b \in \mathbb{R}$
(d) $x^{\prime}=(x+1)(x+2)$
(e) $x^{\prime}=-x+x^{3}+\lambda$ with $\lambda \in \mathbb{R}$
(f) $x^{\prime}=1-\sin x$
11. Find the matrix P and determine the Jordan normal form for the following matrices
(a) $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
(b) $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(c) $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
(d) $A=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
(e) $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(f) $A=\left(\begin{array}{cc}0 & 4 \\ -5 & 4\end{array}\right)$
12. Find the solution of $X^{\prime}=A X$ with $X(0)=X_{0}$ where
(a) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(b) $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$
(c) $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
(d) $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$
(e) $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
13. Solve the IVPs:
(a) $x^{\prime \prime}=4 x$, with $x(0)=2$ and $x^{\prime}(0)=-1$.
(b) $x^{\prime \prime}+x=0$ with $x(0)=0$ and $x^{\prime}(0)=1$.
(c) $x^{\prime \prime}-2 x^{\prime}+x=0$ with $x(0)=1$ and $x^{\prime}(0)=1$.
14. Consider the following IVP (y is a function of x):

$$
\left\{\begin{array}{l}
x^{2} y^{\prime}+x y=x^{3} \\
3 y(1)=4
\end{array}\right.
$$

Write the solution $y(x)$ of the IVP, identifying its maximal domain.
15. Solve the following IVPs
(a) $\left\{\begin{array}{l}x^{\prime}=y+e^{-2 x}, \\ y^{\prime}=x+1,\end{array} \quad x(0)=1, y(0)=2\right.$
(b) $x^{\prime \prime}+x^{\prime}-6 x=2$ with $x(0)=-1$ and $x^{\prime}(0)=1$.
16. For each of the following planar ODEs $X^{\prime}=A X$
(i) $A=\left(\begin{array}{cc}-8 & -5 \\ 10 & 7\end{array}\right)$
(ii) $A=\left(\begin{array}{cc}1 / 2 & -1 / 2 \\ 0 & 1\end{array}\right)$
(iii) $A=\left(\begin{array}{cc}-1 & 1 \\ -1 & -3\end{array}\right)$
(iv) $A=\left(\begin{array}{cc}4 & 1 \\ -4 & 0\end{array}\right)$
(v) $A=\left(\begin{array}{cc}5 & 4 \\ -10 & -7\end{array}\right)$
(vi) $A=\left(\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right)$
(a) Find the Jordan normal form of A
(b) Compute the associated matrix P
(c) Compute solution of the associated IVP
(d) Sketch the phase portrait
17. Find the solution of the following 2nd order scalar ODEs,
(a) $x^{\prime \prime}+b x=0$ with $b>0$ (harmonic oscillator)
(b) $x^{\prime \prime}+a x^{\prime}+b x=0$ with $a, b>0$ (damped harmonic oscillator)

For each case, discuss the phase portrait in the $\left(x, x^{\prime}\right)$-plane.
18. If $y=e^{2 x}$ is a solution of the differential equation

$$
y^{\prime \prime}-\alpha y^{\prime}+10 y=0, \alpha \in \mathbb{R},
$$

show that $\alpha=7$ and find the general solution of the differential equation.
19. Find the real values of a and b for which $e^{2 x}$ and $e^{-2 x}$ are solutions of

$$
y^{\prime \prime}+a y^{\prime}+b y=0, \alpha \in \mathbb{R} .
$$

Write the general solution of the differential equation.
20. Solve the following IVP: $\left\{\begin{array}{l}y^{\prime \prime}+4 y=0 \\ y(0)=0 \\ y(\pi)=0\end{array}\right.$
21. Solve the following differential equations:
(a) $y^{\prime \prime}+3 y+7 y=5 e^{3 x}$
(b) $y^{\prime \prime}-4 y+4 y=8 x^{2}$
(c) $y^{\prime \prime}-3 y+2 y=20 \sin (2 x)$
(d) $y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x}$

