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Abstract Structural equation modeling (SEM) is the term

for a broadly applicable set of statistical techniques that

allow researchers to precisely represent constructs of

interest, measure the extent to which data are consistent

with a proposed conceptual model, and to adjust for the

influence of measurement error. Although SEM may

appear intimidating at first glance, it can be made acces-

sible to researchers. The current manuscript provides a

non-technical overview of SEM and its major constructs

for a novitiate user. Concepts are illustrated using a simple

example, representing a potential study performed in the

field of youth and family research. The purpose of this

manuscript is to offer interested scholars a conceptual

overview and understanding of research questions and

issues that may be addressed with this family of techniques.

Keywords Statistics � Structural equation modeling �
Measurement � Confirmatory factor analysis

Introduction

Structural equation modeling (SEM) offers analytic flexi-

bility to researchers working in the biomedical and

behavioral sciences. SEM allows researchers to work with

directly measured variables and latent factors to represent

relationships among data.

Structural equation modeling encompasses a family of

techniques. Although path analysis and latent growth curve

modeling are considered members, the term SEM most

commonly refers to confirmatory factor analysis (CFA) and

structural regression (SR). A major advantage of this group

of techniques is its ability to model underlying (latent)

variables and error (MacCallum and Austin 2000). Latent

variables (factors) can be thought of as constructs under-

pinning variable scores obtained by researchers (Brown

2006). Youth externalizing behavior, for example, is a

widely studied construct within the behavioral sciences.

Scholars can conceptualize a number of different behaviors

as falling under the umbrella of externalizing (e.g., physi-

cal aggression, vandalism, and non-compliance). Specific

expressions may vary, but these behaviors are all indicators

of a common response group and could be thought of as

caused by an externalizing factor. As such, youth responses

to questions about aggression, theft, and vandalism would

all be viewed as indicators of externalizing. Responses to

these questions would be considered manifest (directly

observed) variables. If these were statistically represented

as caused by a youth externalizing factor, these responses

would be discussed as factor indicators (as represented in

Fig. 1).

In addition to asking different kinds of questions to

serve as indicators of externalizing, we could combine

information from various questionnaires, numerous

respondents, or multiple measurement strategies (e.g., self

report, parent report, and direct observation). Researchers

interested in youth externalizing could gather information

from different sources to get a more accurate representation

of this construct. Parents, who see youth in a number of

settings for an extended period of time, may have data that

would not be observed by researchers in a discrete time

period. Conversely, researchers could be freer from the

bias parents may have toward their child, offering a unique

perspective in their behavioral observations. Teachers

contribute additional insight from their experience with
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youth in the school setting. Combining information from

various sources provides a more accurate assessment than

if a single measure was used (MacCallum and Austin

2000).

Although researchers could create a summary variable

of externalizing (e.g., adding standardized parent and tea-

cher report questionnaires and a behavioral observation

severity score), representing the latent factor causing these

scores offers advantages over this more direct combinato-

rial approach. Latent factors represent the shared variabil-

ity among their indicators (as seen in Fig. 2). This shared

information is thought to represent the true construct

(youth externalizing), rather than idiosyncratic aspects of

each instrument. Latent factor models are conceptualized

as psychological (or biological) constructs causing scores

on measured indicators.

In addition to allowing for more accurate representation

of constructs, latent variable modeling allows researchers

to incorporate error into the model. Variables are rarely

measured perfectly (e.g., due to misreading a question,

inaccuracy in retrospective reporting, and inter-individual

differences in responses to items). Error, inherent in all

psychosocial measurement, thus likely affects obtained

values and can lead to under- or overestimation of rela-

tionships between variables (DeShon 1998; Schmidt and

Hunter 1999). Attenuations in estimated relationships due

to lower internal consistency are adjusted for in SEM

(DeShon 1998). Although this ability to correct is of great

utility and can compensate for psychometric imperfections

to some extent, SEM cannot counteract extensive problems

(Kline 2011). Additionally, other sources of error not

accounted for within the model can still have an effect

similar to that seen in more traditional analytic methods

(DeShon 1998).

It is easy to get excited about the benefits offered by

SEM. Complex arrow and circle diagrams can sometimes

take on alchemic properties, particularly when novitiate

researchers initially begin utilizing this technique. It is

important to note, however, that SEM loses its benefits

outside conceptually sound applications, and although

these approaches offer considerable advantages compared

with traditional generalized linear modeling statistics,

they are neither infallible nor magical in nature. For

example, SEM is primarily a confirmatory technique

(Byrne 2012), meaning that researchers have a solid the-

ory and basic research supporting the proposed model. If

this conceptual foundation does not exist to propel SEM

analyses, then another technique would be more appro-

priate. There are mitigations to this general statement, in

that causal relationships between latent variables in a less

studied area may still be represented using exploratory

SEM (described in Asparouhov and Muthen 2009), but a

fairly coherent theoretical model is still needed. Although

complex statistical techniques may be appealing or daz-

zling at first glance, it is important to recognize that

choosing a simpler method may often be the better way to

answer a research question, just as discretion may be the

better part of valor.

Despite the above admonishments, SEM has been

demonstrated to be a broadly applicable technique that will

be a useful addition to the toolkits of many researchers.

The purpose of this manuscript is to provide researchers

with a broad understanding of SEM. Given the extensive

scope of SEM, this paper is by no means all encompassing;

however, this manuscript is intended to provide a con-

ceptual and practical starting point. In order to demonstrate

the principles of SEM, a computer-generated dataset will

be used [created using Markov Chain Monte Carlo

(MCMC) in Mplus 7.0]. Readers interested in using this

dataset for practice may contact the corresponding author

to request a copy. Authors specified relationships between

variables in this example, and readers should know that the

model will perform better than would typically be seen in

applied samples. Values presented in the example will

reflect those within our generated dataset, based upon

roughly the strength of relationships that may be found

within SEM studies. Additionally, while MCMC datasets

provide a number of statistics useful in simulation studies,

results will be reported in a manner consistent with an SEM

analysis to facilitate demonstration.

Youth 
Externalizing

Physical 
Aggression 

Theft Vandalism

Fig. 1 Youth externalizing factor with question indicators

Parent Report

Behavioral Observation Teacher Report

Youth 
Externalizing

Fig. 2 Shared variability between parent report, teacher report, and

behavioral observations of youth externalizing behavior
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Practical Issues in SEM

Structural equation modeling concepts will be demon-

strated using a model based on Patterson et al. (1989)

conceptualization of youth externalizing behavior. Patter-

son et al. (1989) proposed that poor parenting behaviors

lead to the development of youth externalizing. Although a

number of parenting behaviors are important, use of harsh

and inconsistent discipline is thought to be particularly

influential in shaping youth externalizing. Youth struggling

with externalizing difficulties tends to behave aggressively

with peers, leading to rejection by the normative peer

group (Patterson et al. 1989). Use of harsh and inconsistent

discipline is also likely to have some effect upon peer

rejection; parents modeling ineffective social interactions

may have youth who are less socially skilled and more

likely to be rejected by others. A SEM model in which

harsh and inconsistent discipline predicts youth external-

izing and peer rejection, with youth externalizing affecting

peer rejection, could be used to capture these relationships

and will demonstrate concepts throughout this manuscript.

Notations

Structural equation modeling analysis usually begins with a

visual diagram of the model. This allows researchers to

ensure that all of the conceptual relationships have been

represented and reduces otherwise complex networks of

relationships to a more easily discernible form. To ensure

uniformity and communication between researchers

implementing SEM approaches, these diagrams use a

common language. Oval shapes represent latent factors,

and rectangular ones connote directly measured variables.

A single-headed arrow indicates that one variable predicts

another, whereas a double-headed arrow implies that the

two variables covary or correlate (Hox and Bechger 1998;

Kline 2011). Latent factors have single-headed arrows

pointing at their indicators, representing factor influence on

variable scores.

Measurement Model: CFA

In our example model, we are interested in harsh and

inconsistent discipline, youth externalizing, and peer

rejection. We use multiple measures of each construct in

order to get a more accurate representation; parent report,

teacher report, and behavioral observation data are gath-

ered on all variables. First, we must make sure that data

gathered through these different assessment strategies can

be accurately thought of as caused by the appropriate

underlying variables. This would be accomplished by

testing whether the directly measured indicators of harsh

and inconsistent discipline, youth externalizing, and peer

rejection load onto their respective factors through a CFA

(Fig. 3). Using SEM notation, our three factors are repre-

sented by ovals to indicate that these are latent variables.

Directly measured factor indicators (e.g., parent report,

teacher report, and behavioral observation assessments of

each variable) are represented by rectangular shapes within

Fig. 3. Factors have single-headed arrows pointing toward

their indicators, because we are conceptually modeling

factors as underlying constructs causing scores received on

each measure. These represent regression paths within the

model (i.e., indicators are regressed upon their respective

factors). Variables without an arrow between them are not

allowed to correlate within the model.

Structural Model: SR

While CFA is useful for confirmation of the way data

should align given a theoretical conceptualization, SR

extends the utility of SEM by allowing regression exam-

inations among latent variables. This allows researchers to

test predictive relationships between factors. In the context

of a SR analysis, the relationships between factors and their

indicators have been termed the measurement model (By-

rne 2012). SR analysis combines the CFA model (creating

latent variables) with the regression relationships, as rep-

resented within path analysis; the later portion has been

discussed as the structural model within SEM (Kline 2011).

Although it is possible to run these portions simulta-

neously, Kline (2011) recommends that the measurement

model analysis be conducted prior to testing the structural

model to allow researchers to check for potential problems.

Within our example, the measurement model tested is

represented within Fig. 3 and the structural regression

(adding the structural model) within Fig. 4. Notice that in

Fig. 4, we have single-headed arrows between our three

factors indicating regression paths. We have posited that

harsh and inconsistent discipline will predict externalizing

behavior, which will in turn predict peer rejection. Use of

harsh and inconsistent discipline is further expected to have

a direct effect on peer rejection. In our measurement model

in Fig. 3, the three factors are allowed to correlate, but are

not regressed upon other factors.

Measurement Error

In addition to modeling relationships between factors and

their indicators, SEM offers researchers the ability to rep-

resent error within the model. We add error terms to the

visual representation of our model in Fig. 5 (these would

have been estimated in the above models, but were not

pictured for simplicity’s sake). Error terms associated with

factor indicators are marked with an E, whereas those

influencing factors are represented with a D. This is
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because error terms associated with latent factors are called

disturbances, whereas those of indicators (e.g., specific

measures) are discussed as error (Kline 2011). Dependent

(also termed endogenous) variables have associated error

terms within SEM (Byrne 2012). Variables not affected by

others in the model are discussed as exogenous and do not

have error terms (Byrne 2012). Error terms have causal

arrows pointing toward factors and their indicators in

Fig. 5 to demonstrate their hypothesized influence. We

expect obtained indicator scores to be predicted by both

their underlying factors and error (e.g., unreliable mea-

surement and chance variation, Kline 2011). Conceptually,

this means that we would think of a score on ‘‘teacher

report of youth externalizing’’ to be due to both actual

youth externalizing behavior, error in reporting, and idio-

syncratic aspects of teacher reports of externalizing that are

not shared with other measurement strategies. If we believe

that two variables share a source of measurement error

(e.g., using a questionnaire requiring a reading level that

was inappropriately high for participants in the sample),

their error terms can be correlated.

Sample Size in SEM

Statistical analyses differ in the number of data points

(often conceptualized as number of participants) they

require to detect true existing relationships and obtain

reliable estimates of these (Schreiber et al. 2006). Power is

Fig. 3 Measurement model

Fig. 4 Structural regression
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the ability of a statistical test to detect an extant effect and

is influenced by strength of the relationship between vari-

ables of interest (effect size), the level set for critical p

value (i.e., alpha, typically B0.05), and sample size. In

general, SEM is better suited to large samples, with at least

200 participants being common in published studies (Kline

2011; Ullman 2006). Some have put forth rules of thumb

for determining the appropriate sample size. The N: q rule,

as outlined in Kline (2011), is a popular convention for the

most widely used maximum likelihood (ML) estimation.

By this convention, a ratio of at least 10 (ideally 20) data

points per parameter estimated is recommended. Rules like

this can be helpful, but are not applicable or effective in all

situations. Strength of the relationships between variables,

the number of values that need to be estimated (e.g., causal

paths between factors, variances of variables, and error

variances), and the method of estimation all influence

whether an extant effect will be detected (Kline 2011). This

estimation is conducted in multivariate space and differs

substantially from traditional power analysis with which

readers may already be familiar.

Performing an a priori power analysis can ensure that

researchers have a large enough sample to detect an effect.

SEM tests a number of relationships between variables

(parameters) and general fit of overall model (e.g., model

fit indices, Hancock 2006). Power analysis in SEM can

either focus on the ability to assess how well the model

overall represents the data or on whether specific rela-

tionships (and other values) can be successfully subjected

to tests of statistical significance (Hancock 2006). Con-

ducting a power analysis for tests of overall model fit is a

bit simpler and depends upon the number of degrees of

freedom within a particular model (our example model has

51 degrees of freedom). Readers looking for a discussion of

these issues are directed to Hancock (2006).

Although conducting a power analysis in SEM is more

complex than doing so for other statistical techniques, the

advantage is determining the approximate number of

observations needed. In studies requiring extensive

resources, researchers may want to know the minimum

number of participants required. Alternatively, researchers

who fail to find expected relationships may want to assess

whether this was due to an overly small sample. Precise

power analyses may be conducted, although this is not a

common practice among published SEM manuscripts. It is

more common to think of required sample size in terms of

popular rules of thumb, such as N: q or aiming to gather at

least 200 observations as common among published SEM

studies (Kline 2011).

Model Identification

In SEM analysis, a number of values representing the

obtained data and specified relationships are calculated

(e.g., error terms, factor loadings, variances, and covari-

ances, Bollen 1989; Hox and Bechger 1998). In order to

obtain these, we must have sufficient data to get a unique

solution for each parameter, such a model is said to be

identified (Brown 2006). Analogously, if we were trying to

determine the values of x and y from the equation

x ? y = 15, we would not have enough information to do

so (Byrne 2012). There are any number of values for x and

y that could be added to equal 15, and we cannot determine

which would be more accurate. If such was the case in an

SEM model, we would be unable to solve for each

parameter and our model would be said to be under-

Fig. 5 Structural regression with error terms shown
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identified (Brown 2006). The SEM equation used to build

models is of course much more complex; however, the

general concept is the same (Kline 2011).

In SEM, we want to have enough information to not

only calculate parameters, but also to compare between

different values to see which works better. If we had just

enough information to get a single value for each param-

eter, our model would be just identified. In such a model,

all possible relationships would be represented and the

model would seem to fit the data perfectly (we would not

have the room afforded by degrees of freedom to see

whether this was indeed the case, see Kline 2011 for further

discussion). In order to test whether specific relationships

are a more accurate representation of the data, we need an

overidentified model. This is the reason model identifica-

tion is important to consider within SEM. Scholars should

keep in mind that statistical software will enable compu-

tation of a model that is under-identified, but will provide

invalid estimates (Kline 2011), obviating the utility of

these advanced statistical approaches. Without careful

attention to this somewhat intricate aspect of SEM, it is

very possible to apply techniques correctly only to produce

inaccurate results.

This manuscript will address identification of recursive

models: those without correlated disturbances between latent

factors or reciprocal causal paths between variables. Our

example model falls into this category, as there are no cor-

related disturbance terms or reciprocal causation. Discussion

of identification issues among non-recursive models is limited

by the introductory scope of this manuscript; however, a

highly readable discussion may be found in Kline (2011).

Identification among recursive models is relatively

simple. The model must have more than 0 degrees of

freedom, each factor must have at least three indicators (or

two indicators and multiple factors in the model), and

latent factors need to be given a scale (Kline 2011). Latent

factors must be scaled either through unit loading or unit

variance identification (ULI and UVI, respectively, Kline

2011). Factors are estimated on the basis of manifest var-

iable scores and do not have an inherent metric of their

own. In order for the model to be identified and factor

scores to be interpreted, they must be given a scale (Hox

and Bechger 1998). Generally, the factor is fixed to be on

the same scale as one of the directly measured indicators

[this is called the unit loading identification (ULI), Brown

2006; Kline 2011]. In this case, we are setting the path

between the factor and one of its indicators to be equal to 1,

with the factor taking on the indicator’s scale. ULI was

used in our example model, with unstandardized paths

between parent report of parenting skills, parent report of

youth externalizing, and parent report of youth social skills

being fixed to 1 in order to give the associated latent factors

their scale.

Alternatively, the variance of the latent factor can be

fixed to 1; this is called unit variance identification (UVI,

Brown 2006; Kline 2011). ULI is generally used more

frequently and serves as the default setting in most pro-

grams (Kline 2011). ULI should be used anytime there may

be changes in overall variability between independent

samples or over the course of longitudinal measurement

(Kline 2011).

Model Estimation

Data, Distribution, and Decisions

Structural equation modeling makes a number of assump-

tions about the data being analyzed, which are influenced

by the method used to calculate its parameters. Estimator

functions are equations used to determine numeric values

representing relationships within the model.

Many estimators assume that data are continuous and

multivariate normal (or that ordinal category scores rep-

resent values of a normally distributed continuous vari-

able). Software can be used to examine univariate skew

and kurtosis of individual variables. Multivariate skew and

kurtosis can similarly be assessed using macros (SPSS

syntax for computing values) from Lawrence DeCarlo’s

Columbia University home page (http://www.columbia.

edu/*ld208/, as suggested by Finney and DiStefano 2006).

Additionally, SEM assumes that observations are inde-

pendent and that participants are a random sample of the

population (Bentler and Chou 1987). Linear relationships

among variables are expected (Bentler and Chou 1987),

although quadratic relationships can be incorporated into

more complex models (see Marsh et al. 2006 for a dis-

cussion). It is again important to note that standard com-

putation programs will often compute values even when

assumptions have not been met, providing inaccurate

results. Discussions of assumptions have been unfortu-

nately absent from many recent SEM studies (Schreiber

et al. 2006), and readers are urged not to follow this trend

when applying these techniques in their own work.

Missing Data Issues

Researchers should consider and report the proportion of

missing data within their sample. Missing data can be

handled in a number of ways. Tabachnick and Fidell (2007)

suggest that data missing less than 5 % likely require no

further treatment for most analyses. However, a number of

more sophisticated methods exist, chief among these

maximum likelihood estimation (ML, Brown 2006; Gra-

ham 2009). ML is sometimes called full information

maximum likelihood, because it uses all of the information
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in the dataset to estimate parameters (Enders 2001; Schl-

omer et al. 2010).

Dealing with missing data presents a major issue within

applied statistics (see Little and Rubin 2002 for an over-

view). Strategy for handling missing data is determined by

the pattern responsible for its absence. Data are categorized

as missing completely at random (MCAR), missing at

random (MAR), and not missing at random (NMAR).

Under MAR, missingness of values depends on available

data (Graham 2009). Whether data will be missing is not

related to the value of the missing data and can be pre-

dicted by other variables in the dataset (Enders 2001). Data

missingness that does not depend on either values in the

dataset or the values of the missing data is said to be

MCAR (Graham 2009). When data are NMAR, whether or

not the data are missing depends upon their values (Gra-

ham 2009). The latter case introduces complications for

replacement or estimation of values that are missing.

Maximum likelihood assumes that data are at least MAR

(Brown 2006). Although the MCAR assumption may be

assessed using Little’s MCAR test (available in SPSS),

there is no way to statistically test whether data are MAR

(Brown 2006). Scholars are advised to consider potential

aspects of research design and data collection when

deciding whether data may be NMAR. Data that are

NMAR depend on these variables not in the dataset,

potentially because a confound that was not assessed is

influencing the presence of data missingness (Graham

2009). Analytic difficulties related to NMAR data may be

addressed by modeling the process responsible for miss-

ingness (see Enders 2011 for a discussion).

Choosing an Estimator

Structural equation modeling produces parameter values,

which minimize the discrepancy between observed data

(i.e., what was collected and measured) and data implied

by the model (i.e., what would be expected as extrapolated

from observed data, Olsson et al. 2000). A number of

methods for estimating parameters are available. Estimator

functions vary in robustness against assumption violations

(distribution, model misspecification, etc.) and data for

which they are appropriate (e.g., continuous vs. ordinal).

Given the scope of this manuscript, only a limited number

of estimator issues will be discussed. We will focus on the

broadly applicable maximum likelihood estimator and on

the polychoric correlation-based weighted least squares,

suitable for working with ordinal data.

Given its ability to deal with missing data (Brown 2006;

Enders and Bandalos 2001), ML is commonly the estima-

tion method first considered by researchers. Missing values

for each case are estimated on the basis of available data;

these are then used in parameter determination (Enders

2001). ML essentially estimates parameter values that are

most probable given the obtained data and specified model.

Parameters are thought of as drawn from a normally dis-

tributed set of all possible parameter values, and those that

have the highest probability of occurring are selected.

Maximum likelihood assumes that endogenous variables

(those predicted by others in the model) are multivariate

normal, continuous, and have missing values that are at

least MAR (Kline 2011). Simulation studies have demon-

strated that univariate kurtosis values nearing seven, uni-

variate skew values approaching two, and multivariate

kurtosis values greater than three may be problematic for

ML (Finney and DiStefano 2006). If assumptions of ML

are not met, inaccurate results will be obtained. Applying

ML significance tests to non-normally distributed data can

lead to the occurrence of type I errors (e.g., concluding a

relationship exists where one does not, Finney and

DiStefano 2006).

Robust ML (MLR) has been developed to compensate

for inaccurate findings resulting from use of non-normally

distributed data. MLR provides adjusted statistics of

overall model fit and modified standard errors (Brown

2006; Kline 2011). Brown (2006) suggests that MLR be

used with non-multivariate normal continuous data. Byrne

(2012) also argues that MLR may be used with ordinal data

provided it has at least five categories (e.g., Likert-type

scales). Samples of at least 400 participants have been

suggested as a rule of thumb for MLR estimation

(Schermelleh-Engel et al. 2003).

Although ML has a number of advantages, its iterative

process is susceptible to local maximum values. The ML

algorithm starts out with a set of best guesses for model

parameters and then continues to modify to improve upon

these until it cannot do so further (Kline 2011). However, if

the initial values are off to a substantial degree, ML may

run into problems. Rindskopf (1998) describes the ML

iterative process as analogous to a person with a bucket on

his head trying to find the highest point around. The person

only sees a small section of the ground beneath his feet

when looking for the highest point and may miss the hill

off to the side if he gets stuck on a smaller elevation

(Rindskopf 1998). This issue has been termed as the local

maximum problem, and researchers can manually select

starting values for parameters (i.e., override the computer’s

guesses) to try to deal with this issue, as well as general

failure of the algorithm to converge (Kline 2011). For a

more nuanced and practical approach to this problem,

Kline (2011) offers a helpful discussion on starting value

selection.

Weighted least squares (WLS) and robust weighted least

squares (WLSMV) estimation techniques are aimed at

handling ordinal data (Flora and Curran 2004). Both utilize

polychoric correlations, which measure relationships
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between ordinal variables assuming categories serve as

values of an underlying continuous variable (Flora and

Curran 2004). WLS was initially developed for this type of

data; however, it can run into calculation difficulties with a

large number of observed variables and requires large

samples (n [ 1,000; Flora and Curran 2004; Schermelleh-

Engel et al. 2003). WLSMV is a modification of WLS

created to deal with these problems, providing superior

performance in small to medium samples (Byrne 2012).

Hence, we agree with Brown’s (2006) recommendation

that WLSMV be used with ordinal data if possible; how-

ever, to the best of our knowledge, this estimator is cur-

rently only available in Mplus software (Byrne 2012),

potentially limiting some researchers’ ability to make use

of it.

Choosing between estimators depends upon data char-

acteristics and distribution. Within our example analysis,

all variables were continuous and normally distributed,

allowing us to use ML estimation. If our data had been

ordinal, we would have chosen between WLSMV and

MLR; although WLSMV is specifically designed for

ordinal data, MLR would allow for greater flexibility in

model comparison (i.e., non-nested models). Use of MLR

for ordinal data becomes less problematic as the number of

categories increases and the distribution approaches

normal.

Interpreting Results

Model Fit

Model fit refers to the extent to which the pattern of rela-

tionships implied by the researcher’s model is obtained

within the data. Fit indices provide estimates for overall fit

of the model. Notably, these statistics provide an average

measure of model fit, rather than information on specific

aspects (these may still be inaccurate, Kline 2011). Model

fit is evaluated by examining a number of fit indices, rather

than focusing on a single one. Reporting multiple indices

of fit is generally recommended as indices have different

strengths and weaknesses with regard to various data

characteristics and areas of model misspecification (Bentler

2007). ML estimation was used to obtain parameters and

calculate fit of our model within the generated data.

A widely used measure of model fit is the exact fit chi

square (v2). v2 assesses whether there is a statistically

significant difference between the data pattern obtained and

that implied by the model (Kline 2011). v2 is testing

whether there is a statistically significant difference

between the observed and predicted data: the null model is

that there is no difference. Thus, larger significant v2 values

indicate greater model misfit. A non-statistically significant

v2 on the other hand would suggest that there were no

differences beyond chance between the data predicted by

the researcher’s model and obtained (i.e., providing support

for the model, or essentially perfect fit). The v2 statistic is

influenced by sample size, with scholars arguing that very

minor differences could appear statistically significant in a

large enough sample due to chance alone (Brown 2006).

Due to this concern, Brown (2006) suggests that other fit

indices be given stronger consideration in applied studies.

Kline (2011) argues that the v2 needs to be given serious

weight and its rejection can lead to the acceptance of

incorrect models. Specifically, Kline (2011) notes that cut

offs for other indices vary in their ability to reject a poorly

fitting model depending on the model and sample charac-

teristics. While Kline (2011) offers a valid criticism,

Brown’s (2006) perspective is generally more common

among published SEM studies.

The Bentler comparative fit index (CFI, Bentler 1990) is

a widely used incremental index of model fit (Hooper et al.

2008). The CFI assesses the extent to which the predicted

model is better than one in which variables are completely

independent of each other (Kline 2011). The null hypoth-

esis for this statistic is that there is no difference between

the proposed model and a model where there are no rela-

tionships between variables. The greater the CFI value, the

more the researcher’s model offers an improvement over

total lack of relationships: CFI ranges from 0 to 1 (Brown

2006). Monte Carlo simulations suggest that CFI values

above 0.95 generally suggest close fit (Hu and Bentler

1999). Values greater than 0.90 may indicate acceptable

model fit, particularly if other indices support the model

(Brown 2006). CFI has the advantage of correcting for

sample size and is thought to provide an accurate assess-

ment of overall fit even in small samples (Hooper et al.

2008).

Standardized root-mean-squared residual (SRMR) gives

a measure of the discrepancy between observed and pre-

dicted correlations between variables (Brown 2006).

SRMR can be conceptualized as the average error in

relationship prediction, and the bigger the error, the more

mistakes the model is making. The null model could be

conceptualized as a lack of error in model prediction, and

the bigger the SRMR, the more errors (on average) the

model is making. Smaller SRMR values indicate better fit.

As it is standardized, SRMR can range between 0 and 1

(Brown 2006). Hu and Bentler (1999) suggest that values

less than 0.08 indicate good model fit. Others argue that

SRMR less than 0.05 is needed to conclude the model fits

well (Hooper et al. 2008). SRMR tends to perform worse

with categorical data and to be generally lower in large

samples and models with many parameters (Brown 2006;

Hooper et al. 2008). Kline (2011) generally suggests that

inspecting the matrix of residuals is more helpful than
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examining the SRMR, although this remains a popular

index to report.

Root-mean-square error of approximation (RMSEA;

Steiger and Lind 1980) measures the misfit of the model

while adjusting for model complexity and sample size

(Brown 2006). The null hypothesis for the RMSEA statistic

is that the proposed model does not differ from that sup-

ported by the data (MacCallum et al. 1996). The bigger the

RMSEA the greater the discrepancy between the data and

the researchers model; smaller RMSEA values suggest

better model fit (Kline 2011). Kline (2011) suggests that

values less than 0.05 indicate good fit, although Hu and

Bentler (1999) propose that a cutoff of 0.06 be used.

Schermelleh-Engel et al. (2003) provide some interpretive

guidelines for higher values: that RMSEA less than 0.08

may be viewed as representing adequate fit and that

RMSEA less than 0.10 may still be acceptable although it

is far from ideal. MacCallum and Austin (2000) argue that

RMSEA be given stronger consideration than other indices,

because it provides confidence intervals and has received

support in simulation studies. Although RMSEA has been

extensively studied and has a number of advantages, it can

sometimes result in type II error (rejecting true model) in

small samples (Brown 2006). The indices discussed above

are popular and widely used, but by no means all encom-

passing. There is a plethora of other measures of model fit

available to the interested reader within the SEM literature

(see Hooper et al. 2008; Schermelleh-Engel et al. 2003 for

further overview).

Numerous methods of assessing model fit allow us to

draw on strengths of varied indices in statistical evaluation.

However, a well-fitting model may not accurately represent

the true state of the world: the case of alternative equiva-

lent models offers an illustrative example of this point

(MacCallum et al. 1993). Models with the same implied

covariance matrices, and number of restrictions may fit

equally well, regardless of the direction of causal rela-

tionships (Tomarken and Waller 2003). Thus, a model in

which variable A predicts variable B could fit as well as

one where variable B predicts variable A, although these

would have discrepant theoretical implications. Non-

equivalent alternative model structures with differing

covariance matrices may similarly fit as well as the model

proposed by researchers, and a well-fitting model may omit

key variables (Tomarken and Waller 2003). Parameter

estimates drawn from a model that does not accurately

represent the phenomena of interest would offer scholars

an inaccurate perspective on variable relationships (Henley

et al. 2006; Tomarken and Waller 2003). Scholars are

urged to consider these conceptual issues during analysis

and interpretation of model fit.

Continuing the applied example from previous sec-

tions, we can examine fit of our current model by

examining various fit indices. Following the suggested

two-step process, we first run a CFA, making sure that

the variables load onto their hypothesized factors as

predicted. We expected to obtain three latent factors of

harsh and inconsistent discipline, youth externalizing,

and peer rejection. Our generated sample had 500 par-

ticipants and 100 MCMC datasets. ML was used to

analyze the model, and no missing data were present.

Model fit information was as follows: v2 = 50.26,

df = 51, p [ 0.10, CFI = 0.998, SRMR = 0.02,

RMSEA = 0.01 (95 % CI 0.00–0.02 *Note RMSEA

confidence intervals are not provided with MCMC

datasets with MPlus, and these values were calculated by

authors). In the current example, all of the indices

indicate that this model provides a close fit for the data.

The v2 is not statistically significant, indicating that the

proposed model is not discrepant from the obtained data.

CFI is well over 0.95, suggesting that our model is a

much better representation of relationships than one

where all variables were independent. SRMR is below

the smallest suggested cutoff of 0.05, and its value

indicating that the average of standardized error terms in

the model is about 0.02. RMSEA is similarly small and

falls below the lowest suggested value of 0.05, letting us

know that data does not deviate a great deal from what

would be predicted by the model.

Although this model provided a close fit for that data,

we may have conceptualized the parenting variables as

falling onto separate harsh discipline and inconsistent

discipline factors. Testing this measurement model, we

also find a close fit for the data: v2 = 47.27, df = 48,

p [ 0.10, CFI = 0.998, SRMR = 0.02, RMSEA = 0.01

(95 % CI 0.00–0.02), even though we know that we had

specified that the harsh and inconsistent scales fall onto a

single factor during data generation. This example

highlights the importance of considering alternative

models with equivalent fit in SEM. Despite close fit of

both models, we note that the four factor model does not

provide a superior fit to the three factor model (see

subsequent section for a discussion of model compari-

son). Based on our conceptualization of harsh and

inconsistent discipline as a single factor and considering

the superior parsimony of such a model, we use the

original three factor conceptualization for the structural

regression.

We hypothesize that harsh and inconsistent discipline

will predict youth externalizing behavior and peer rejection

and that externalizing would also have a direct effect on

peer rejection. Model fit information is as follows:

v2 = 50.26, df = 51, p [ 0.10, CFI = 0.998, SRMR =

0.02, RMSEA = 0.01 (95 % CI 0.00–0.02). As discussed

above, these values indicate that the model in general

closely represents the data.
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Local Areas of Misfit

Model fit indices provide information on the model as a

whole: however, even a model that overall appears to

describe the data well may have major problems in specific

areas (Brown 2006). Modification indices and residual

values offer information on parts of the model that may not

fit well (Brown 2006; Kline 2011). The residual matrix

represents the difference between values observed and

predicted by the model (Kline 2011). This matrix is a

collection of numbers displaying the prediction error in

each relationship specified by the model (Brown 2006).

Individual residual values can be examined to see which

relationships are problematic. Standardized residual values

can be considered analogous to z scores, which represent

departure from a perfect model in standard deviations

(Brown 2006). As such, standardized residual values can be

subjected to statistical testing to see whether a significant

error exists. Varied cutoffs for this value have been sug-

gested, with some researchers arguing that a number of

values greater than 1.96 (significant at p \ 0.05) may

indicate that a model change is in order (Anderson and

Gerbing 1988). Brown (2006) notes that others suggest that

values greater than 2.58 (significant at p \ 0.01) may be

considered extreme, particularly in bigger samples where

standardized residual values will tend to be larger. A

negative residual suggests that a relationship between two

variables has been overestimated, whereas a positive

residual suggests that it has been underestimated (Brown

2006; Kline 2011).

Modification indices provide information on how

much better fitting a model would be if a particular

change were made (specifically the estimated decrease in

v2, Hox and Bechger 1998). As the larger v2 values

represent greater discrepancy between model predicted

and actual data, decreases in v2 would mark improve-

ments in model fit. Like the v2, modification indices are

influenced by sample size and are more likely to be

larger in bigger samples (Brown 2006). Information

available from standardized residuals and modification

indices may make it tempting to make a number of

changes on the basis of statistics alone; however, chan-

ges made to improve model fit without consideration for

theory can lead to a nonsensical model, which is unlikely

to be replicated in another sample (Brown 2006).

Scholars are urged to consider any changes they may be

making from a conceptual perspective. Unfortunately,

modification index statistics and standardized residuals

are not available with MCMC datasets (and thus our

example); however, most SEM programs will allow

researchers to request this option.

Parameters in the Model

A number of relationships between variables are estimated

within an SR model. Values associated with relationships

between variables are termed path coefficients. Path coef-

ficients are similar to standardized and unstandardized

coefficients in a multiple regression and may be interpreted

as such (Byrne 2012; Hox and Bechger 1998). Among

standardized factor loadings, paths may be squared to

obtain how much variance in the indicator a factor can

explain, so long as the indicator is only caused by a single

factor (Kline 2011). If multiple factors cause an indicator,

the standardized loadings are analogous to regression beta

weights (Kline 2011). Double-headed arrows represent

covariances between variables (if unstandardized) and

correlations (if standardized, Hox and Bechger 1998).

Along with path coefficients, researchers obtain standard

errors associated with each path. Dividing a path coeffi-

cient by its standard error provides a z test statistic, which

can be used to test statistical significance (Ullman 2006).

We can examine values in Fig. 6 to get a sense of

relationships within our example model. We can see that

indicators of the harsh and inconsistent discipline factor

range in standardized loading size from 0.50 to 0.77.

Because these variables load only onto harsh and incon-

sistent discipline, we can square these values to obtain the

amount of variance parenting skill can explain in each of

its indicators (around 25 to 59 %). Loadings on external-

izing range from 0.59 to 0.75 and those on peer rejection

between 0.65 and 0.84. These values can similarly be

squared to provide further information: the latent variable

of externalizing accounts for approximately 35 to 56 % and

peer rejection for about 42 to 71 % of the variance in their

respective indicators. In addition to factor loadings, rela-

tionships between factors are represented in the model. We

expected harsh and inconsistent discipline to have a posi-

tive effect on youth externalizing and youth peer rejection.

Youth externalizing was hypothesized to predict peer

rejection. The pattern of relationships was as expected.

Peer rejection was predicted by youth externalizing (0.45)

and harsh and inconsistent discipline (0.44). Youth exter-

nalizing was predicted by harsh and inconsistent discipline

(0.49). These coefficients are standardized and may be

interpreted similarly to beta weights in a multiple

regression.

One of the main advantages of SEM is its ability to

adjust for error. Along with the values we have obtained for

relationships between factors and their indicators, SEM

provides estimates for residual variances of each variable.

These are represented as predicting their respective vari-

ables. The residual terms let us know how much of the
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variance in each particular variable remains unexplained

within the model. Residual terms for indicators range from

0.29 to 0.77. Larger residual variance terms suggest that

some indicators are not accounted for as well by their latent

factors (or perhaps were more prone to measurement error).

Residual values (disturbances) for endogenous latent fac-

tors are also represented.

Comparing Alternative Models

Although SEM is primarily a confirmatory technique,

scholars may compare several models to determine which

one fits the data best. Models being compared can fall

under two categories: nested and non-nested. When a

model is nested under another, it is a more restricted ver-

sion of its parent model (Brown 2006). Relationships that

are allowed to exist in the parent model are fixed to zero in

the nested model (Bentler and Chou 1987). Examples of

nested models would include those with the same number

of indicators but varied numbers of factors, a model that

specifies an additional causal relationship between vari-

ables versus one that does not, a model that sets a con-

straint on factor loadings to be equal across gender versus

one that allows those to vary. Nested models can be sta-

tistically compared using v2 difference testing (Bentler and

Chou 1987).

Let us say for example that we wanted to compare the

model described above to an alternative. In the initial

model, harsh and inconsistent discipline predicted youth

externalizing and peer rejection, with externalizing

behavior having a direct effect on peer rejection. In the

alternative model, harsh and inconsistent discipline

predicts externalizing and externalizing predicts peer

rejection. In this case, the path between harsh and incon-

sistent discipline and peer rejection could be thought of as

constrained to zero. In the parent model, harsh and

inconsistent discipline is allowed to have an influence on

peer rejection, but in the nested model this relationship is

not permitted. The procedure for v2 difference testing is

fairly straightforward. To conduct a difference test, we

calculate the difference between the v2 values and degrees

of freedom for the two models (Brown 2006). The resultant

v2 value with its degrees of freedom could be assessed for

statistical significance using a v2 table of critical values.

For our example, the parent model has a v2 of 50.26 with

51 degrees of freedom. The nested model, where the

relationship between harsh and inconsistent discipline and

peer rejection is removed, has a v2 of 104.35 with 52

degrees of freedom. The difference v2 is equal to 54.09

with 1 degree of freedom, which is statistically significant

at p \ 0.001. Remember that in the context of evaluating

model fit, higher v2 values indicate greater deviation

between the proposed model and data. When we take the

difference of the two v2 values, we are looking to see

whether the statistic associated with the parent model is

significantly smaller than that of the nested model. A

smaller v2 value suggests that there is less discrepancy

between model and data.

Non-nested models cannot be statistically compared

using v2 difference testing (Kline 2011), although a number

of other measures exist. Notably, researchers should con-

sider that models that allow for more relationships can

appear to fit the data better regardless of whether this

accurately represent the true state of the world (Bollen

Fig. 6 Structural regression with parameter estimates
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1989). To correct for this issue, indices used to compare

non-nested models adjust for model complexity. A number

of indices of model fit are suitable for comparing non-

nested models; among them, Akaike information criterion

(AIC), Bayes information criterion (BIC), and expected

cross-validation index (ECVI; Schreiber et al. 2006). AIC

and ECVI both adjust for model complexity, with AIC

adjusting for the number of model parameters and ECVI

adjusting for complexity and sample size (Brown 2006;

Vrieze 2012). Lower AIC, BIC, and ECVI values indicate

better model fit (Brown 2006; Vrieze 2012). BIC adjusts its

evaluation of the model for both the number of parameters

and observations within the sample (Vrieze 2012). Vrieze

(2012) advocates for the use of BIC due to its guaranteed

ability to select the correct model given a large enough

sample and provided that the true model is among those

tested. A number of other fit indices exist, and statistical

software varies in the indices provided. Interested readers

are referred to Rust et al. (1995) for a more extensive

discussion of model comparison. Given our use of Mplus,

we present the available AIC and BIC measures of model

fit.

Although AIC and BIC do not allow for statistical sig-

nificance testing, the model with the smallest AIC and BIC

values is more likely to be replicated in an independent

sample, (Kline 2011). The AIC value of our parent model

was 14,866.68, and the AIC for our nested model was

14,918.780. The BIC value of our parent model was

15,031.05, and the BIC for our nested model was

15,078.94. In both cases, the parent model was suggested

to provide a closer fit, consistent with our v2 difference test.

Allowing for a relationship between harsh and inconsistent

discipline and peer rejection was found to be the better

representation.

Conclusion

This manuscript offers an introduction to a flexible and

useful statistical technique. We hope that this brief

description of the relevant issues has given scholars an

understanding of basic concepts and a desire to learn more,

perhaps even applying SEMs in their own research. SEM

can be particularly useful in studies concerning youth,

where directly measured data from multiple reporters can

be represented using latent variables. Researchers can also

apply techniques to experimental and longitudinal studies

and are encouraged to continue exploring these issues in

their own work. In order to encourage further learning, we

offer resources we have found helpful below. These are by

no means all encompassing or the only good sources for

SEM; however, these are tools we have found helpful in

our quest to understand and apply SEM techniques.

Resources

• Kline, R.B. (2011). Principles and Practice of Struc-

tural Equation Modeling, Third Edition. New York,

NY: Guilford Press. A well-written introductory text

covering the basics in SEM in an easy to understand

fashion for the novice user.

• Brown, T.A. (2006). Confirmatory Factor Analysis for

Applied Research. New York, NY: Guilford Press.

Comprehensive and readable book on confirmatory

factor analysis (with most topics being applicable to

structural regression models).

• Hancock, G.R. & Mueller, R.D. (2006). Structural

Equation Modeling: A Second Course. Greenwich, CT:

Information Age Publishing. A more advanced discus-

sion of practical issues within SEM and deviations from

basic models (e.g., non-recursive models, categorical

data, and non-linear relationships).

• Bollen, K.A. (1989). Structural Equations with Latent

Variables. Hoboken, NJ: Wiley-Interscience. An

advanced discussion of mathematical procedures and

issues within SEM.

• SEMNET listserv (accessible at http://www2.gsu.edu/

*mkteer/semnet.html)—a popular email listserv

scholars throughout the world use to discuss conceptual

and practical issues associated with SEM.
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