
782 Pairwise Correlation

PAIRWISE CORRELATION. See
CORRELATION

PAIRWISE DELETION

Pairwise deletion is a term used in relation to
computer software programs such as SPSS in con-
nection with the handling of missing data. Pairwise
deletion of missing data means that only cases relating
to each pair of variables with missing data involved
in an analysis are deleted. Consider the following
scenario: We have a sample of 200 cases and want
to produce a set of Pearson correlations for 10
variables. Let us take the first 3 variables. Variable
1 has 4 missing cases, Variable 2 has 8 missing cases,
and Variable 3 has 2 missing cases. Let us also assume
that the missing cases are different for each of the
variables; that is, Variable 1’s 4 missing cases are not
among Variable 2’s 8 missing cases. (In practice, this
will not always be the case because if a person does
not answer questions relating to both Variable 1 and
Variable 2, he or she will be a case with missing data
on both variables.) When we analyze the 10 variables,
the correlation between Variables 1 and 2 will be based
on 188 cases (because between them, Variable 1 and
Variable 2 have 12 missing cases). The correlation
between Variable 1 and Variable 3 will be based on
194 cases (because between them, they have 6 missing
cases), and between Variable 2 and Variable 3, it will
be based on 190 cases (because between them, they
have 10 missing cases).

—Alan Bryman

See also Deletion, Listwise Deletion

PANEL

The term panel refers to a research design in
which the data are gathered on at least two occa-
sions on the same units of analysis. Most commonly,
that unit of analysis is an individual in a survey. In
a two-wave panel survey, respondents at time t are
reinterviewed at time t + 1; in a three-wave panel,
they would be reinterviewed yet again at time t + 2.

Sometimes, the units of analysis of the panel are
aggregates, such as nations. For example, a sample
of European countries might be measured at time t
and again at t + 1. A special value of a panel design
is that it incorporates the temporality required for
strong causal inference because the potential causal
variables, the Xs, can actually be measured before Y
occurs. In addition, panel studies allow social change
to be gauged. For example, with repeated interview-
ing over a long time, panel surveys (unlike cohort
designs) have the potential to distinguish age effects,
period effects, and cohort effects.

A chief disadvantage of the panel approach is the
data attrition from time point to time point, espe-
cially with panel surveys in which individuals drop
out of the sample. A related problem is the issue of
addition to the panel, in that demographic change may,
over time, suggest that the original panel is no longer
representative of the population initially sampled.
For example, as a result of an influx of immigrants, it
may be that the panel should have respondents added
to it to better reflect the changed population.

—Michael S. Lewis-Beck

PANEL DATA ANALYSIS

Panel data refer to data sets consisting of multiple
observations on each sampling unit. This could be
generated by pooling time-series observations across
a variety of cross-sectional units, including countries,
states, regions, firms, or randomly sampled individu-
als or households. This encompasses longitudinal data
analysis in which the primary focus is on individual
histories. Two well-known examples of U.S. panel
data are the Panel Study of Income Dynamics (PSID),
collected by the Institute for Social Research
at the University of Michigan, and the National
Longitudinal Surveys of Labor Market Experi-
ence (NLS) from the Center for Human Resource
Research at Ohio State University. An inventory
of national studies using panel data is given at
http://www.ceps.lu/Cher/Cherpres.htm. These include
the Belgian Household Panels, the German Socio-
economic Panel, the French Household Panel, the
British Household Panel Survey, the Dutch Socio-
economic Panel, the Luxembourg Household Panel,
and, more recently, the European Community house-
hold panel. The PSID began in 1968 with 4,802
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families and includes an oversampling of poor
households. Annual interviews were conducted and
socioeconomic characteristics of each family and
roughly 31,000 individuals who had been in these or
derivative families were recorded. The list of variables
collected is more than 5,000. The NLS followed five
distinct segments of the labor force. The original
samples include 5,020 men ages 45 to 59 years in 1966,
5,225 men ages 14 to 24 years in 1966, 5,083 women
ages 30 to 44 years in 1967, 5,159 women ages 14
to 24 years in 1968, and 12,686 youths ages 14 to 21
years in 1979. There was an oversampling of Blacks,
Hispanics, poor Whites, and military in the youths
survey. The variables collected run into the thousands.
Panel data sets have also been constructed from the U.S.
Current Population Survey (CPS), which is a monthly
national household survey conducted by the Census
Bureau. The CPS generates the unemployment rate and
other labor force statistics. Compared with the NLS and
PSID data sets, the CPS contains fewer variables, spans
a shorter period, and does not follow movers. However,
it covers a much larger sample and is representative of
all demographic groups.

Some of the benefits and limitations of using panel
data are given in Hsiao (1986). Obvious benefits
include a much larger data set because panel data are
multiple observations on the same individual. This
means that there will be more variability and less
collinearity among the variables than is typical of
cross-section or time-series data. For example, in a
demand equation for a given good (say, gasoline) price
and income may be highly correlated for annual time-
series observations for a given country or state. By
stacking or pooling these observations across different
countries or states, the variation in the data is increased
and collinearity is reduced. With additional, more
informative data, one can get more reliable estimates
and test more sophisticated behavioral models with less
restrictive assumptions. Another advantage of panel
data is their ability to control for individual heterogen-
eity. Not controlling for these unobserved individual
specific effects leads to bias in the resulting estimates.
For example, in an earnings equation, the wage of an
individual is regressed on various individual attributes,
such as education, experience, gender, race, and so
on. But the error term may still include unobserved
individual characteristics, such as ability, which is
correlated with some of the regressors, such as
education. Cross-sectional studies attempt to control
for this unobserved ability by collecting hard-to-get

data on twins. However, using individual panel data,
one can, for example, difference the data over time and
wipe out the unobserved individual invariant ability.
Panel data sets are also better able to identify and
estimate effects that are not detectable in pure cross-
section or pure time-series data. In particular, panel
data sets are better able to study complex issues of
dynamic behavior. For example, with cross-section
data, one can estimate the rate of unemployment at
a particular point in time. Repeated cross-sections
can show how this proportion changes over time.
Only panel data sets can estimate what proportion
of those who are unemployed in one period remains
unemployed in another period.

Limitations of panel data sets include the follow-
ing: problems in the design, data collection, and data
management of panel surveys (see Kasprzyk, Duncan,
Kalton, & Singh, 1989). These include the problems of
coverage (incomplete account of the population of
interest), nonresponse (due to lack of cooperation
of the respondent or because of interviewer error),
recall (respondent not remembering correctly), fre-
quency of interviewing, interview spacing, reference
period, the use of bounding to prevent the shifting of
events from outside the recall period into the recall
period, and time-in-sample bias. Another limitation of
panel data sets is the distortion due to measurement
errors. Measurement errors may arise because of faulty
response due to unclear questions, memory errors,
deliberate distortion of responses (e.g., prestige bias),
inappropriate informants, misrecording of responses,
and interviewer effects. Although these problems can
occur in cross-section studies, they are aggravated in
panel data studies. Panel data sets may also exhibit bias
due to sample selection problems. For the initial wave
of the panel, respondents may refuse to participate, or
the interviewer may not find anybody at home. This
may cause some bias in the inference drawn from this
sample. Although this nonresponse can also occur in
cross-section data sets, it is more serious with panels
because subsequent waves of the panel are still subject
to nonresponse. Respondents may die, move, or find
that the cost of responding is high. The rate of attrition
differs across panels and usually increases from one
wave to the next, but the rate of increase declines over
time. Typical panels involve annual data covering a
short span of time for each individual. This means that
asymptotic arguments rely crucially on the number of
individuals in the panel tending to infinity. Increasing
the time span of the panel is not without cost either. In
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fact, this increases the chances of attrition with every
new wave, as well as the degree of computational
difficulty in estimating qualitative limited dependent
variable panel data models (see Baltagi, 2001).

Although random-coefficient models can be
used in the estimation and specification of panel data
models (Hsiao, 1986), most panel data applications
have been limited to a simple regression with error
components disturbances, such as the following:

yit = x′itβ+ µi + νit , i = 1, . . . , N; t = 1, . . . , T

whereyit may denote log(wage) for the ith individual at
time t, and xit is a vector of observations on k explana-
tory variables such as education, experience, race,
sex, marital status, union membership, hours worked,
and so on. In addition, β is a k vector of unknown
coefficients, µi is an unobserved individual specific
effect, and νit is a zero mean random disturbance with
variance σ 2

ν . The error components disturbances fol-
low a one-way analysis of variance (ANOVA). If µi
denote fixed parameters to be estimated, this model
is known as the fixed-effects (FE) model. The xits
are assumed independent of the νits for all i and t .
Inference in this case is conditional on the particularN
individuals observed. Estimation in this case amounts
to including (N − 1) individual dummies to estimate
these individual invariant effects. This leads to an enor-
mous loss in degrees of freedom and attenuates the
problem of multicollinearity among the regressors.
Furthermore, this may not be computationally feasible
for large N panels. In this case, one can eliminate
the µis and estimate β by running least squares of
ỹit = yit − ȳi. on the x̃its similarly defined, where
the dot indicates summation over that index and the bar
denotes averaging. This transformation is known as the
within transformation, and the corresponding estimator
of β is called the within estimator or the FE estimator.
Note that the FE estimator cannot estimate the effect of
any time-invariant variable such as gender, race, reli-
gion, or union participation. These variables are wiped
out by the within transformation. This is a major dis-
advantage if the effect of these variables on earnings is
of interest. Ignoring the individual unobserved effects
(i.e., running ordinary least squares [OLS] without
individual dummies) leads to biased and inconsistent
estimates of the regression coefficients.

If µi denotes independent random variables with
zero mean and constant variance σ 2

µ, this model is
known as the random-effects model. The preceding
moments are conditional on the xits. In addition,µi and
νit are assumed to be conditionally independent. The

random-effects (RE) model can be estimated by
generalized least squares (GLS), which can be obtained
using a least squares regression of y∗it = yit − θȳi. on
x∗it similarly defined, where θ is a simple function of
the variance components σ 2

µ and σ 2
ν (Baltagi, 2001).

The corresponding GLS estimator of β is known as the
RE estimator. Note that for this RE model, one can esti-
mate the effects of individual-invariant variables. The
best quadratic unbiased (BQU) estimators of the vari-
ance components are ANOVA-type estimators based
on the true disturbances, and these are minimum
variance unbiased (MVU) under normality of the dis-
turbances. One can obtain feasible estimates of the
variance components by replacing the true disturbances
by OLS or fixed-effects residuals. For the random-
effects model, OLS is still unbiased and consistent but
not efficient.

Fixed versus random effects has generated a lively
debate in the biometrics and econometrics literature.
In some applications, the random- and fixed-effects
models yield different estimation results, especially if
T is small and N is large. A specification test based
on the difference between these estimates is given by
Hausman (1978). The null hypothesis is that the indi-
vidual effects are not correlated with the xits. The basic
idea behind this test is that the fixed-effects estima-
tor β̃FE is consistent, whether or not the effects are
correlated with the xits. This is true because the fixed-
effects transformation described by ỹit wipes out the
µi effects from the model. In fact, this is the modern
econometric interpretation of the FE model—namely,
that the µis are random but hopelessly correlated with
all the xits. However, if the null hypothesis is true,
the fixed-effects estimator is not efficient under the
random-effects specification because it relies only on
the within variation in the data. On the other hand,
the random-effects estimator β̂RE is efficient under the
null hypothesis but is biased and inconsistent when
the effects are correlated with the xits. The difference
between these estimators q̂ = β̃FE − β̂RE tends to zero
in probability limits under the null hypothesis and is
nonzero under the alternative. The variance of this dif-
ference is equal to the difference in variances, var(q̂) =
var(β̃FE) − var(β̂RE) because cov(q̂, β̂RE) = 0 under
the null hypothesis. Hausman’s test statistic is based on
m = q̂ ′[var(q̂)]−1q̂ and is asymptotically distributed
as a chi-square with k degrees of freedom under the
null hypothesis.

For maximum likelihood as well as generalized
method of moments estimation of panel models, the
reader is referred to Baltagi (2001). Space limitations
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do not allow discussion of panel data models that
include treatment of missing observations, dynam-
ics, measurement error, qualitative limited dependent
variables, endogeneity, and nonstationarity of the
regressors. Instead, we focus on some frequently
encountered special panel data sets—namely, pseudo-
panels and rotating panels. Pseudo-panels refer to the
construction of a panel from repeated cross sections,
especially in countries where panels do not exist but
where independent surveys are available over time.
The United Kingdom Family Expenditure Survey, for
example, surveys about 7,000 households annually.
These are independent surveys because it may be
impossible to track the same household across surveys,
as required in a genuine panel. Instead, one can track
cohorts and estimate economic relationships based on
cohort means. Pseudo-panels do not suffer the attrition
problem that plagues genuine panels and may be avail-
able over longer time periods. One important question
is the optimal size of the cohort. A large number of
cohorts will reduce the size of a specific cohort and
the samples drawn from it. Alternatively, selecting few
cohorts increases the accuracy of the sample cohort
means, but it also reduces the effective sample size of
the panel.

Rotating panels attempt to keep the same number of
households in the survey by replacing the fraction of
households that drop from the sample in each period
with an equal number of freshly surveyed households.
This is a necessity in surveys in which a high rate
of attrition is expected from one period to the next.
Rotating panels allow the researcher to test for the exis-
tence of time-in-sample bias effects. These correspond
to a significant change in response between the initial
interview and a subsequent interview when one would
expect the same response.

With the growing use of cross-country data over
time to study purchasing power parity, growth con-
vergence, and international research and development
spillovers, the focus of panel data econometrics has
shifted toward studying the asymptotics of macro pan-
els with large N (number of countries) and large T
(length of the time series) rather than the usual asymp-
totics of micro panels with large N and small T .
Researchers argue that the time-series components of
variables such as per capita gross domestic product
growth have strong nonstationarity. Some of the dis-
tinctive results that are obtained with nonstationary
panels are that many test statistics and estimators of
interest have Normal limiting distributions. This is in

contrast to the nonstationary time-series literature in
which the limiting distributions are complicated func-
tionals of Weiner processes. Several unit root tests
applied in the time-series literature have been extended
to panel data (see Baltagi, 2001). However, the use of
such panel data methods is not without their critics,
who argue that panel data unit root tests do not rescue
purchasing power parity (PPP). In fact, the results on
PPP with panels are mixed depending on the group of
countries studied, the period of study, and the type of
unit root test used. More damaging is the argument
that for PPP, panel data tests are the wrong answer to
the low power of unit root tests in single time series.
After all, the null hypothesis of a single unit root is
different from the null hypothesis of a panel unit root
for the PPP hypothesis. Similarly, panel unit root tests
did not help settle the question of growth convergence
among countries. However, it was useful in spurring
much-needed research into dynamic panel data models.

Over the past 20 years, the panel data method-
ological literature has exhibited phenomenal growth.
One cannot do justice to the many theoretical and
empirical contributions to date. Space limitations
prevented discussion of many worthy contributions.
Some topics are still in their infancy but growing fast,
such as nonstationary panels and semiparametric and
nonparametric methods using panel data. It is hoped
that this introduction will whet the reader’s appetite
and encourage more readings on the subject.

—Badi H. Baltagi
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PARADIGM

In everyday usage, paradigm refers either to a
model or an example to be followed or to an estab-
lished system or way of doing things. The concept was
introduced into the philosophy of science by Thomas


