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form of an additive disturbance (or error) term. Let
the (unobserved) individual variation be represented
by ui :

E(yi |Xi) = exp(Xib + ui) = eXib+ui
= e

∑
j bj xji+ui = e

∑
j bj xji × eui .

If the variance ofui happens to be 0, then this degen-
erates to a Poisson model (because e0 = 1). However,
if we posit that ui has a gamma distribution, then
the observed distribution of yi would be the negative
binomial. It is typical to assume that E(ui) = 0, so
that “on average” the heterogeneity observed among
cases has no effect. That is to say, the expected value
of a Poisson or negative binomial model is the same.
However, when the variance of ui > 0, the disper-
sion of the negative binomial distribution is greater.
Long’s (1997) textbook offers an excellent treatment of
this issue.

Many extensions of the count model framework
are available or are being pioneered in the advanced
literature of statistics. The approach can be extended
to situations in which one observes a greater than
expected number of zeroes in the counts. An ency-
clopedic treatment of count models was presented by
Cameron and Trivedi (1998).

—Paul E. Johnson
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EVENT HISTORY ANALYSIS

Event history analysis is a technique that allows
researchers to address not only whether an event occurs
but also when it occurs. An event is a change from one
state to another, and the dependent variable is the time
until the event occurs. Event history analysis is ideally
suited to the study of longitudinal change and can be

thought of as extending logit/probit analysis and
event count models to take into consideration the
timing of the event(s).

Two common complications arise in longitudinal
data analysis that motivate the use of event history
analysis. First, censored observations exist in the data
when information about the duration (the amount of
time an observation spends in a particular state) is
incomplete. This may occur, for example, because the
observation did not experience the event of interest
prior to the end of the study or because the observa-
tion is lost in follow-up, perhaps because the subject
moved and could not be located. Second, time-varying
covariates (or independent variables) have values that
change over time. For example, in a study of the timing
of challenger entry in a congressional election, the
amount of money raised by an incumbent legislator
could be a time-varying explanatory variable across
the election cycle. Event history techniques can read-
ily incorporate censored observations and time-varying
explanatory variables. The inclusion of time-varying
covariates in event history analysis can lead to novel
information regarding how the risk of an event occur-
rence changes in relation to changes in the value of that
covariate.

HISTORICAL DEVELOPMENT

Event history analysis is also referred to as duration,
survival, or reliability analysis, depending on the sub-
stantive origins of the discussion (medicine and engi-
neering for the latter two terms, respectively). Early
applications involved life table analysis by Kaplan and
Meier (1958), but the historical roots can be traced
back even further to the late 1600s (Hald, 1990). There
was an increased use of the technique during World
War II because of concerns over the expected relia-
bility of military equipment. The path-breaking work
of D. R. Cox (1972) is credited with another period of
expansion in the use of event history analysis as a result
of his development of semiparametric techniques. His
work is likely to be heralded as one of the top statisti-
cal achievements in the 20th century. Applications in
medicine and the social sciences have increased greatly
as a result of the less restrictive semiparametric Cox
regression model and its various extensions, which
are built upon the mathematics of counting processes
(Therneau & Grambsch, 2000).
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PARAMETRIC AND
SEMIPARAMETRIC MODELS

Both parametric and semiparametric models are
available in event history analysis. Analysts studying
mechanical systems typically use parametric models,
which assume that the time until the event of interest
follows a specific distribution, such as the exponen-
tial. Studies of human behavior and biology typically
use the less restrictive semiparametric Cox model,
which leaves the particular distributional form of the
duration times unspecified. Blossfeld and Rohwer
(2002, pp. 180, 263) argued that social science the-
ory rarely provides the justification for a specific para-
metric distribution and instead advocated for use of the
Cox model.

A key concept in the estimation and interpretation
of an event history model is the hazard rate. The
hazard rate gives the rate at which observations fail
(or durations end) by time t given that the observation
has survived through time t − 1. In other words, it
can be interpreted as the probability that an event will
occur for a particular observation at a particular time.
The risk set refers to those observations that are still
“at risk” of experiencing the event of interest. Once
the observation experiences the event at time t , the
observation exits the risk set and is no longer part of
the data set being analyzed at t + 1. The hazard rate
has substantive appeal in that the event of interest is
conditional on its history. For example, given that a
war has lasted t periods, what is the likelihood that it
will end in the subsequent period? The hazard rate for
the Cox model may be written as

h(t |Xi) = h0(t)e
Xiβ,

where h0(t) is an (unspecified) baseline hazard func-
tion and Xi are covariates for observation i.

MODEL ASSUMPTIONS
AND MODEL FITTING

The major assumption to be checked when fit-
ting event history models is the proportional hazards
assumption. Most event history models, including the
Cox model, assume that the hazard functions of any
two individuals with different values on one or more
covariates differ only by a factor of proportionality. Put
differently, the baseline hazard rate varies with time but
not across individuals, so that the ratio of the hazards

for individuals i and j are independent of t and are
constant for all t :

hi(t)

hj (t)
= eβ(Xj−Xi).

Estimation of Cox’s model when hazards do not
satisfy the proportionality assumption can result
in biased and inefficient estimates of all parame-
ters, not simply those for the covariate(s) in ques-
tion. The proportional hazards assumption should be
checked with Harrell’s ρ for individual covariates
and with Grambsch and Therneau’s global test for
nonproportionality (Box-Steffensmeier & Zorn, 2001;
Therneau & Grambsch, 2000). If evidence of non-
proportionality is found (and, in most social science
research, proportionality is more the exception than the
rule), then the potentially nonproportional covariates
should be interacted with ln(time) or other appropri-
ate transformations of time. Such interactions allow
each interacted covariate’s effect on the hazard of con-
flict to vary monotonically with the duration of the
event being studied. Relaxing this assumption allows
scholars to test whether the effects of covariates change
over time and permits a more nuanced understanding
of the phenomenon being studied. Moreover, nonpro-
portionality tests, and the residuals upon which they
are based, are increasingly easy to obtain in commonly
used software packages for analyzing duration data.

If parametric models are estimated, the assump-
tion of the chosen parametric distribution needs to be
tested, and the proportional hazard assumption may
still need to be assessed (for example, the Weibull
model also assumes proportional hazards). The gener-
alized gamma distribution is an encompassing model
for several commonly used parametric distributions
and thus may serve to help adjudicate among compet-
ing nested models. Because the parametric models are
estimated by maximum likelihood and the properties
of these estimators are well known, the standard bat-
tery of goodness-of-fit indices and statistics are directly
applicable to the parametric modeling framework, for
example, use of the likelihood ratio test or the
Akaike information criterion (AIC). However, the prin-
cipal advantage of the Cox model is not having to make
assumptions about the nature and shape of the baseline
hazard rate, and thus the Cox model should be the first
choice among modeling strategies for social scientists
(Box-Steffensmeier & Jones, 1997).
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Another underlying assumption of almost all event
history models is that all observations eventually will
experience the event of interest. This assumption can be
relaxed by estimating a split-population model. (These
models are also known as cure models in biostatistics,
a name based on the idea that part of the population
is cured.) As examples, in studies of the timing of
campaign contributions, split-population models do
not assume that every political action committee (PAC)
eventually will give to every political candidate, and
in studies of criminal recidivism, the models do not
assume that all former prisoners eventually will return
to prison. Split-population models estimate the pro-
portion of observations that will not experience the
event, together with the parameters characterizing the
hazard rate for the proportion experiencing the event.
These models allow differential effects for the covari-
ates on whether the event occurred and its timing. For
example, a covariate may have a positive effect on
whether a contribution is made but a negative effect
on when it is made. The appeal of the log-likelihood in
a split-population model is that observations that never
experience the event contribute information only to part
of the function. As such, the log-likelihood “splits” the
two populations (Schmidt & Witte, 1988).

DIAGNOSTICS

As in the traditional regression setting, residual
analysis in the event history analysis context is a
method of checking specification or model adequacy.
Various pseudo-residuals are defined in event history
analysis for checking different aspects of a model,
taking into account the complication that censoring
adds to the definition of a residual. In addition to their
use in testing the proportional hazards assumption,
pseudo-residuals can help the researcher in assessing
the model fit, functional form of the covariates, and
influence of particular observations. For example, the
martingale residuals can be calculated to test whether
a given covariate X should be entered linearly, as a
quadratic, or in one of the many other possibilities.
These diagnostic methods should be used routinely
in applications to ensure the integrity of the model
(Therneau & Grambsch, 2000).

SINGLE AND MULTIPLE EVENTS

In addition to studying a single-event occurrence,
where once the event is experienced, the observation

leaves the risk set, event history analysis also can
consider multiple events. Event history models for
multiple events take into account the lack of indepen-
dence across events, because ignoring the correlation
can yield misleading variance estimates and possibly
biased estimates of the coefficients.

Multiple events can be simultaneous unordered
events whose risk of occurring varies. In this case, we
consider one of several types of “failure,” and such pro-
cesses are referred to as competing risks. For example,
a member of the U.S. House of Representatives may
leave the House in a variety of substantively interesting
ways that we should recognize and incorporate into our
models, such as being defeated in the primary, being
defeated in the general election, running for higher
office, or retiring. We would expect that the hazard
rate and effects of the covariates will differ across these
types of departure.

One can also consider ordered multiple (or
repeated) events. Repeated-events processes, in which
subjects experience the same type of events more
than once, are common in fields as diverse as public
health, criminology, labor and industrial economics,
demography, and political science. Failing to account
for repeated events implicitly assumes that the first,
second, third, and subsequent events are statistically
independent of one another, a strong and usually unten-
able assumption. The conditional interevent (or gap)
time model will be applicable for most instances of
repeated events in social science. However, the nature
of the means by which repeated events occur (that is,
sequentially or simultaneously) and the correspond-
ing construction of the “risk set” for each observation
should provide the primary motivation for select-
ing one model over another (Box-Steffensmeier &
Zorn, 2002).

EXAMPLE AND INTERPRETATION

Many applications of event history analysis exist
in the social sciences, and the substantive realm of
problems being studied is greatly expanding. Exam-
ples include studies of the duration of unemployment,
peace, survey response time, criminal recidivism, mar-
riages, public policy program implementation, and lob-
bying. Table 1 presents typical Cox proportional hazard
estimates, using militarized conflict data. (Efron’s
approximation for ties is used in the estimation of
the Cox model. The Breslow approximation was the
first approximation developed and is not generally
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Table 1 Cox Proportional Hazards Model of
Conflict

β (S.E.) p value

Democracy −0.439(0.100) < 0.001
Growth −3.227(1.229) 0.009
Alliance −0.414(0.111) < 0.001
Contiguous 1.213(0.121) < 0.001
Capability ratio −0.214(0.051) < 0.001
Trade −13.162(10.327) 0.202
Wald or LR test 272.35 (df = 6) < 0.001

NOTE: N = 20,448.

recommended, whereas the exact likelihood option
typically gives results extremely similar to those
obtained with the Efron approximation while taking
considerably longer to converge.)

Oneal and Russett’s (1997) widely used data on
the relationship among economic interdependence,
democracy, and peace is used for the illustration. The
data consist of 20,448 observations on 827 dyads (i.e.,
pairs of states such as the United States and Canada),
between 1950 and 1985. We model the hazard of a
militarized international conflict as a function of six
primary covariates (some of which vary over time):
a score for democracy (a dyadic score for the two
countries which ranges from −1 to 1), the level of
economic growth (the lesser rate of economic growth,
as a percentage, of the two countries), the presence of
an alliance in the dyad (a dummy variable indicating
whether the two countries were allied), the two nations’
contiguity (a dummy variable for geographic contigu-
ity), their military capability ratio (a ratio measuring
the dyadic balance of power), and the extent of bilat-
eral trade in the dyad (a measure of the importance
of dyadic trade to the less trade-oriented country; it is
the ratio of dyadic trade to the gross domestic product
of each country). (See Oneal and Russett, 1997, for
details of the variables and coding.)

Liberal theory suggests that all variables except con-
tiguity ought to decrease the hazard of a dispute, while
contiguity should increase it. The likelihood ratio (LR)
test at the bottom of Table 1 shows that the specified
model is preferred to the null model (i.e., the null
hypothesis is that there is no statistically significant
difference between the specified model and the null
model of no independent variables). All the coefficients
are in the expected directions, and all except that for
trade are statistically significant. Note that the Cox
model does not have an intercept term; it is absorbed

into the baseline hazard. Because the coefficients of the
Cox model are parameterized in terms of the hazard
rate, a positive coefficient indicates that the hazard is
increasing, or “rising,” with changes in the covariate
(and hence survival time is decreasing), and a negative
sign indicates the hazard is decreasing as a function
of the covariate. For this model, the negative coef-
ficient of –0.439 for democracy suggests that dyadic
democracy reduces the likelihood of conflict; that is,
dyadic democracy results in a lower hazard (and longer
survival time). Box-Steffensmeier and Jones (1997)
used the percentage change in the risk of experienc-
ing the event to understand the impact of the effect
(p. 1434). For a dichotomous independent variable,
the percentage change in the risk of experiencing the
event is

100[e(βk×1) − e(βk×0)]/e(βk×0).

Negative coefficients produce values of e(βk×1) that
are less than one, and therefore produce negative per-
centage changes. The interpretation for a continuous
independent variable is similar:

100[e[βk×(x+δ)] − e(βk×x)]/e(βk×x).
This gives the percentage change in the hazard rate

for a δ-unit change in the independent variable, x. So,
a one-unit increase in the democracy variable corre-
sponds to a [(e(−0.439)− 1)× 100] = 36% decrease in
the hazard of conflict at any given time.

In actuality, the militarized conflict data are char-
acterized by large numbers of repeated events; for
example, Britain and Germany fought each other in
both World War I and World War II. Box-Steffensmeier
and Zorn (2002) used these data to illustrate repeated
events duration modeling and show that important
differences are uncovered by taking into account the
dependence generated from repeated conflicts.

Social science theories are increasingly focused
on change processes, and temporal data are becom-
ing widely available. Event history analysis is ideally
suited for leveraging these research elements. The
flexibility of the techniques, recent extensions for
multiple events, and the incorporation of the obser-
vation’s history about the events of interest are all
compelling reasons to expect the use and popularity
of event history techniques to increase in the social
sciences.

—Janet M. Box-Steffensmeier
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EVENT SAMPLING

Event sampling refers to a diverse class of specific
empirical methods for studying individual experiences
and social processes within their natural, spontaneous
context. Event sampling procedures are designed to
obtain reasonably detailed accounts of thoughts, feel-
ings, and behaviors as they occur in everyday life.
Examples include the experience sampling method
(ESM), in which respondents are signaled at random
moments during the day and asked to describe their
activity at that exact moment, and daily diaries, in
which at the end of each day, for some period (typically
ranging from 1 week to 1 month), respondents report
their experiences on that day. In one typical ESM study,
50 college students were signaled by pagers seven
times per day for 1 week. When signaled, students with
higher need for intimacy (as assessed on a projective
personality test) were more likely to be thinking about
people and relationships, were more often engaged in
conversations with others and less likely to wish to be
alone, and reported more positive affect if they were
socializing (McAdams & Constantian, 1983).

Event sampling methods require that participants
monitor and describe their ongoing activity along
dimensions and according to schedules and formats
defined by the researcher. Event sampling has three
fundamental rationales that differentiate it from other
common research paradigms (e.g., laboratory experi-
ments, surveys): (a) that because behavior is influenced
by context, it is important to sample behavior in its
natural environment; (b) that global, retrospective
reports are often biased by people’s limited abilities
to remember and summarize numerous events over
time; and (c) that accounts of seemingly ordinary,
everyday experience, when properly examined, are
capable of providing valuable insights about human
behavior. Topics for which event sampling methods
have been employed profitably include emotion, social
interaction, pain, smoking, stress and coping, student
motivation, exercise, eating disorders, psychopathol-
ogy, self-relevant cognition, personality, intergroup
relations, and evaluations of drug treatments and
therapeutic interventions.

Most event sampling studies employ one of
three general protocols: time-contingent respond-
ing, in which participants report their experiences at
fixed intervals (e.g., daily, hourly); event-contingent
responding, in which a report is solicited whenever a
predefined event occurs (e.g., smoking a cigarette, con-
versing with a friend), and signal-contingent respond-
ing, in which participants describe their experiences
when signaled to do so by some device (e.g., a pager
or a preprogrammed portable computer). Signals may
follow a fixed or random schedule. Although event
sampling was originated with simple paper-and-pencil
responses, recent developments in electronic recording
devices [e.g., personal digital assistants (PDAs) and
voice recorders], as well as in ambulatory physiologi-
cal monitoring, have added considerably to the validity,
flexibility, and range of these methods.

Event sampling is not limited to participant self-
reports. For example, in an observational study of
schoolchildren, observers might code the behavior of
a target child (e.g., what the child is doing, with whom
he or she is currently interacting, visible affective
expressions, and so on) according to any of the above
schedules (e.g., every 10 minutes, after conflict, or
following a randomized schedule, respectively).

In a typical event sampling study, a researcher might
obtain a series of detailed descriptions of adolescents’
momentary moods and actions across a 2-week period.
These records could then be used in several ways: for


