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MULTI-ITEM MEASURES

The item is the basic unit of a psychological scale.
It is a statement or question in clear, unequivocal
terms about the measured characteristics (Haladyna,
1994). In social science, scales are used to assess
people’s social characteristics, such as attitudes, per-
sonalities, opinions, emotional states, personal needs,
and description of their living environment.

An item is a “mini” measure that has a molec-
ular score (Thorndike, 1967). When used in social
science, multi-item measures can be superior to a sin-
gle, straightforward question. There are two reasons.
First, the reliability of a multi-item measure is higher
than a single question. With a single question, people
are less likely to give consistent answers over time.
Many things can influence people’s response (e.g.,
mood, specific thing they encountered that day). They
may choose yes to a question one day and say no the
other day. It is also possible that people give a wrong
answer or interpret the question differently over time.
On the other hand, a multi-item measure has several
questions targeting the same social issue, and the final
composite score is based on all questions. People are
less likely to make the above mistakes to multiple
items, and the composite score is more consistent over
time. Thus, the multi-item measure is more reliable
than a single question. Second, the validity of a
multi-item measure can be higher than a single ques-
tion. Many measured social characteristics are broad
in scope and simply cannot be assessed with a single
question. Multi-item measures will be necessary to
cover more content of the measured characteristic and
to fully and completely reflect the construct domain.

These issues are best illustrated with an example. To
assess people’s job satisfaction, a single-item measure
could be as follows:

I’m not satisfied with my work. (1 = disagree,
2= slightly disagree, 3= uncertain, 4= slightly
agree, 5 = agree)

To this single question, people’s responses can be
inconsistent over time. Depending on their mood or
specific things they encountered at work that day, they
might respond very differently to this single ques-
tion. Also, people may make mistakes when reading
or responding. For example, they might not notice
the word not and agree when they really disagree.
Thus, this single-item measure about job satisfaction
can be notoriously unreliable. Another problem is
that people’s feelings toward their jobs may not be
simple. Job satisfaction is a very broad issue, and
it includes many aspects (e.g., satisfaction with the
supervisor, satisfaction with coworkers, satisfaction
with work content, satisfaction with pay, etc.). Subjects
may like certain aspects of their jobs but not others.
The single-item measure will oversimplify people’s
feelings toward their jobs.

A multi-item measure can reduce the above prob-
lems. The results from a multi-item measure should
be more consistent over time. With multiple items,
random errors could average out (Spector, 1992). That
is, with 20 items, if a respondent makes an error on
1 item, the impact on the overall score is quite minimal.
More important, a multi-item measure will allow sub-
jects to describe their feelings about different aspects of
their jobs. This will greatly improve the precision and
validity of the measure. Therefore, multi-item mea-
sures are one of the most important and frequently used
tools in social science.

—Cong Liu

See also Scaling
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MULTILEVEL ANALYSIS

Most of statistical inference is based on replicated
observations of units of analysis of one type (e.g.,
a sample of individuals, countries, or schools). The
analysis of such observations usually is based on the
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assumption that either the sampled units themselves or
the corresponding residuals in some statistical model
are independent and identically distributed. However,
the complexity of social reality and social science
theories often calls for more complex data sets,
which include units of analysis of more than one
type. Examples are studies on educational achieve-
ment, in which pupils, teachers, classrooms, and
schools might all be important units of analysis; organi-
zational studies, with employees, departments, and
firms as units of analysis; cross-national comparative
research, with individuals and countries (perhaps also
regions) as units of analysis; studies in generaliz-
ability theory, in which each factor defines a type
of unit of analysis; and meta-analysis, in which the
collected research studies, the research groups that pro-
duced them, and the subjects or respondents in these
studies are units of analysis and sources of unexplained
variation. Frequently, but by no means always, units
of analysis of different types are hierarchically nested
(e.g., pupils are nested in classrooms, which, in turn,
are nested in schools). Multilevel analysis is a general
term referring to statistical methods appropriate for
the analysis of data sets comprising several types of
unit of analysis. The levels in the multilevel analysis
are another name for the different types of unit of
analysis. Each level of analysis will correspond to a
population, so that multilevel studies will refer to
several populations—in the first example, there are
four populations: of pupils, teachers, classrooms, and
schools. In a strictly nested data structure, the most
detailed level is called the first, or the lowest, level. For
example, in a data set with pupils nested in classrooms
nested in schools, the pupils constitute Level 1, the
classrooms Level 2, and the schools Level 3.

HIERARCHICAL LINEAR MODEL

The most important methods of multilevel analysis
are variants of regression analysis designed for hier-
archically nested data sets. The main model is the
hierarchical linear model (HLM), an extension of
the general linear model in which the probabil-
ity model for the errors, or residuals, has a structure
reflecting the hierarchical structure of the data. For
this reason, multilevel analysis often is called hier-
archical linear modeling. As an example, suppose
that a researcher is studying how annual earnings of
college graduates well after graduation depend on aca-
demic achievement in college. Let us assume that

the researcher collected data for a reasonable number
of colleges—say, more than 30 colleges that can be
regarded as a sample from a specific population of
colleges, with this population being further specified
to one or a few college programs—and, for each of
these colleges, a random sample of the students who
graduated 15 years ago. For each student, informa-
tion was collected on the current income (variable Y )
and the grade point average in college (denoted by the
variable X in a metric where X = 0 is the minimum
passing grade). Graduates are denoted by the letter i
and colleges by j. Because graduates are nested in col-
leges, the numbering of graduates imay start from 1 for
each college separately, and the variables are denoted
by Yij andXij . The analysis could be based for college
j on the model

Yij = aj + bjXij + Eij .
This is just a linear regression model, in which

the intercepts aj and the regression coefficients bj
depend on the college and therefore are indicated with
the subscript j. The fact that colleges are regarded as
a random sample from a population is reflected by the
assumption of random variation for the intercepts aj
and regression coefficients bj . Denote the population
mean (in the population of all colleges) of the inter-
cepts by a and the college-specific deviations by U0j ,

so that aj = a + U0j . Similarly, split the regression
coefficients into the population mean and the college-
specific deviations bj = b+U1j . Substitution of these
equations then yields

Yij = a + bXij + U0j + U1jXij + Eij .
This model has three different types of residuals: the

so-called Level-1 residual Eij and the Level-2 resid-
uals U0j and U1j . The Level-1 residual varies over
the population of graduates; the Level-2 residuals vary
over the population of colleges. The residuals can be
interpreted as follows. For colleges with a high value
of U0j , their graduates with the minimum passing
gradeX = 0 have a relatively high expected income—
namely, a+U0j . For colleges with a high value ofU1j ,

the effect of one unit GPA extra on the expected income
of their graduates is relatively high—namely, b+U1j .

Graduates with a high value of Eij have an income
that is relatively high, given their college j and their
GPA Xij .

This equation is an example of the HLM; in its
general form, this model can have more than one
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independent variable. The first part of the equation,
a + bX ij , is called the fixed part of the model;
this is a linear function of the independent variables,
just like in linear regression analysis. The second
part, U0j + U1jXij + Eij , is called the random part
and is more complicated than the random residual in
linear regression analysis, as it reflects the unexplained
variationEij between the graduates as well as the unex-
plained variation U0j + U1jXij between the colleges.
The random part of the model is what distinguishes
the hierarchical linear model from the general linear
model. The simplest nontrivial specification for the
random part of a two-level model is a model in which
only the intercept varies between Level-2 units, but
the regression coefficients are the same across Level-2
units. This is called the random intercept model, and
for our example, it reads

Yij = a + bXij + U0j + Eij .
Models in which also the regression coefficients

vary randomly between Level –2 units are called
random slope models (referring to graphs of the regres-
sion lines, in which the regression coefficients are the
slopes of the regression lines).

The dependent variable Y in the HLM always is
a variable defined at the lowest (i.e., most detailed)
level of the hierarchy. An important feature of the
HLM is that the independent, or explanatory, variables
can be defined at any of the levels of analysis. In the
example of the study of income of college graduates,
suppose that the researcher is interested in the effect
on earnings of alumni of college quality, as measured
by college rankings, and that some meaningful college
ranking score Zj is available. In the earlier model, the
college-level residualsU0j andU1j reflect unexplained
variability between colleges. This variability could be
explained partially by the college-level variable Zj ,
according to the equations

aj = a + c0Zj + U0j , bj = b + c1Zj + U1j ,

which can be regarded as linear regression equations
at Level 2 for the quantities aj and bj , which are
themselves not directly observable. Substitution of
these equations into the Level-1 equation Yij = aj +
bjXij + Eij yields the new model,

Yij = a + bXij + c0Zj + c1XijZj + U0j

+ U1jXij + Eij ,

where the parameters a and b and the residuals
Eij , U0j , and U1j now have different meanings than
in the earlier model. The fixed part of this model is
extended compared to the earlier model, but the random
part has retained the same structure. The term c1XijZj
in the fixed part is the interaction effect between
the Level-1 variable X and the Level-2 variable Z.
The regression coefficient c1 expresses how much the
college context (Z)modifies the effect of the individual
achievement (X) on later income (Y ); such an effect
is called a cross-level interaction effect. The possi-
bility of expressing how context (the “macro level”)
affects relations between individual-level variables (the
“micro level”) is an important reason for the popularity
of multilevel modeling (see DiPrete & Forristal, 1994).

A parameter that describes the relative importance
of the two levels in such a data set is the intraclass
correlation coefficient, described in the entry with
this name and also in the entry on variance compo-
nent models. The similar variance ratio, when applied
to residual (i.e., unexplained) variances, is called the
residual intraclass correlation coefficient.

ASSUMPTIONS, ESTIMATION, AND TESTING

The standard assumptions for the HLM are the linear
model expressed by the model equation, normal dis-
tributions for all residuals, and independence of the
residuals for different levels and for different units in
the same level. However, different residuals for the
same unit, such as the random intercept U0j and the
random slope U1j in the model above, are allowed to
be correlated; they are assumed to have a multivari-
ate normal distribution. With these assumptions, the
HLM for the example above implies that outcomes
for graduates of the same college are correlated due
to the influences from the college—technically, due to
the fact that their equations for Yij contain the same
college-level residuals U0j and U1j . This dependence
between different cases is an important departure from
the assumptions of the more traditional general linear
model used in regression analysis.

The parameters of the HLM can be estimated by
the maximum likelihood method. Various algo-
rithms have been developed mainly in the 1980s (cf.
Goldstein, 2003; Longford, 1993); one important
algorithm is an iterative reweighted least squares algo-
rithm (see the entry on generalized least squares),
which alternates between estimating the regression
coefficients in the fixed part and the parameters of
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the random part. The regression coefficients can be
tested by T-tests or Wald tests. The parameters defin-
ing the structure of the random part can be tested by
likelihood ratio tests (also called deviance tests)
or by chi-squared tests. These methods have been
made available since the 1980s in dedicated multilevel
software, such as HLM and MLwiN, and later also
in packages that include multilevel analysis among a
more general array of methods, such as M-Plus, and
in some general statistical packages, such as SAS and
SPSS. An overview of software capabilities is given in
Goldstein (2003).

MULTIPLE LEVELS

As was illustrated already in the examples, it is not
uncommon that a practical investigation involves more
than two levels of analysis. In educational research,
the largest contributions to achievement outcomes usu-
ally are determined by the pupil and the teacher, but
the social context provided by the group of pupils in
the classroom and the organizational context provided
by the school, as well as the social context defined
by the neighborhood, may also have important influ-
ences. In a study of academic achievement of pupils,
variables defined at each of these levels of analysis
could be included as explanatory variables. If there
is an influence of some level of analysis, then it is
to be expected that this influence will not be com-
pletely captured by the variables measured for this level
of analysis, but there will be some amount of unex-
plained variation between the units of analysis for this
level. This should then be reflected by including this
unexplained variation as random residual variability in
the model. The first type of residual variability is the
random main effect of the units at this level, exem-
plified by the random intercepts U0j in the two-level
model above. In addition, it is possible that the effects
of numerical variables (such as pupil-level variables)
differ across the units of the level under consideration,
which can again be modeled by random slopes such
as the U1j above. An important type of conclusion of
analyses with multiple levels of analysis is the par-
titioning of unexplained variability over the various
levels. This is discussed for models without random
slopes in the entry on variance component models.
How much unexplained variability is associated with
each of the levels can provide the researcher with
important directions about where to look for further
explanation.

Levels of analysis can be nested or crossed. One
level of analysis—the lower level—is said to be nested
in another, higher level if the units of the higher level
correspond to a partition into subsets of the units of
the lower level (i.e., each unit of the lower level is
contained in exactly one unit of the higher level).
Otherwise, the levels are said to be crossed. Crossed
levels of analysis often are more liable to lead to
difficulties in the analysis than nested levels: Estima-
tion algorithms may have more convergence problems,
the empirical conclusions about partitioning variability
over the various levels may be less clear-cut, and there
may be more ambiguity in conceptual and theoretical
modeling.

The use of models with multiple levels of analysis
requires a sufficiently rich data set on which to base the
statistical analysis. Note that for each level of analysis,
the units in the data set constitute a sample from the
corresponding population. Although any rule of thumb
should be taken with a grain of sand, a sample size less
than 20 (i.e., a level of analysis represented by less than
20 units) usually will give only quite restricted informa-
tion about this population (i.e., this level of analysis),
and sample sizes less than 10 should be regarded with
suspicion.

LONGITUDINAL DATA

In longitudinal research, the HLM also can be
used fruitfully. In the most simple longitudinal data
structure, with repeated measures on individuals, the
repeated measures constitute the lower (first) and the
individuals the higher (second) levels. Mostly, there
will be a meaningful numerical time variable: For
example, in an experimental study, this may be the
time since onset of the experimental situation, and in
a developmental study, this may be age. Especially
for nonbalanced longitudinal data structures, in which
the numbers and times of observations differ between
individuals, multilevel modeling may be a natural and
very convenient method. The dependence of the out-
come variable on the time dimension is a crucial aspect
of the model. Often, a linear dependence is a useful
first approximation. This amounts to including the time
of measurement as an explanatory variable; a random
slope for this variable represents differential change (or
growth) rates for different individuals. Often, however,
dependence on time is nonlinear. In some cases, it
will be possible to model this while remaining within
the HLM by using several nonlinear transformations
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(e.g., polynomials or splines) of time and postulating a
model that is linear in these transformed time variables
(see Snijders & Bosker, 1999, chap. 12). In other cases,
it is better to forgo the relative simplicity of linear
modeling and construct models that are not linear in
the original or transformed variables or for which the
Level-1 residuals are autocorrelated (cf. Verbeke &
Molenberghs, 2000).

NONLINEAR MODELS

The assumption of normal distributions for the
residuals is not always appropriate, although some-
times this assumption can be made more realistic by
transformations of the dependent variable. In particu-
lar, for dichotomous or discrete dependent variables,
other models are required. Just as the general-
ized linear model is an extension of the general
linear model of regression analysis, nonlinear versions
of the HLM also provide the basis of, for exam-
ple, multilevel versions of logistic regression and
logit models. These are called hierarchical gen-
eralized linear models or generalized linear mixed
models (see the entry on hierarchical nonlinear
models).

—Tom A. B. Snijders
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MULTIMETHOD-MULTITRAIT
RESEARCH. See MULTIMETHOD RESEARCH

MULTIMETHOD RESEARCH

Multimethod research entails the application of two
or more sources of data or research methods to the
investigation of a research question or to different
but highly linked research questions. Such research
is also frequently referred to as mixed methodology.
The rationale for mixed-method research is that most
social research is based on findings deriving from a
single research method and, as such, is vulnerable to
the accusation that any findings deriving from such a
study may lead to incorrect inferences and conclusions
if measurement error is affecting those findings. It
is rarely possible to estimate how much measurement
error is having an impact on a set of findings, so that
monomethod research is always suspect in this regard.

MIXED-METHOD RESEARCH
AND MEASUREMENT

The rationale of mixed-method research is under-
pinned by the principle of triangulation, which
implies that researchers should seek to ensure that
they are not overreliant on a single research method
and should instead employ more than one measure-
ment procedure when investigating a research problem.
Thus, the argument for mixed-method research, which
in large part accounts for its growth in popularity, is
that it enhances confidence in findings.

In the context of measurement considerations,
mixed-method research might be envisioned in rela-
tion to different kinds of situations. One form might be
that when one or more constructs that are the focus of
an investigation have attracted different measurement
efforts (such as different ways of measuring levels of
job satisfaction), two or more approaches to measure-
ment might be employed in combination. A second
form might entail employing two or more methods
of data collection. For example, in developing an
approach to the examination of the nature of jobs in
a firm, we might employ structured observation and
structured interviews concerning apparently identical


