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at Level 1, classrooms at Level 2, and schools at
Level 3. Each higher-level (say, Level 2) model takes
into account the nested nature of data collected at a
lower level (say, Level 1). Thus, the hierarchical nature
of the data is completely and efficiently captured in
HLM (Raudenbush & Bryk, 1988).

—Chao-Ying Joanne Peng

See also CROSS-SECTIONAL DESIGN
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NETWORK ANALYSIS

Network analysis is the interdisciplinary study of
social relations and has roots in anthropology, socio-
logy, psychology, and applied mathematics. It con-
ceives of social structure in relational terms, and its
most fundamental construct is that of a social net-
work, comprising at the most basic level a set of social
actors and a set of relational ties connecting pairs
of these actors. A primary assumption is that social
actors are interdependent and that the relational ties
among them have important consequences for each
social actor as well as for the larger social groupings
that they comprise.

The nodes or members of the network can be
groups or organizations as well as people. Network
analysis involves a combination of theorizing, model
building, and empirical research, including (possi-
bly) sophisticated data analysis. The goal is to study

network structure, often analyzed using such concepts
as density, centrality, prestige, mutuality, and role.
Social network data sets are occasionally multidi-
mensional and/or longitudinal, and they often include
information about actor attributes, such as actor age,
gender, ethnicity, attitudes, and beliefs.

A basic premise of the social network paradigm is
that knowledge about the structure of social relation-
ships enriches explanations based on knowledge about
the attributes of the actors alone. Whenever the social
context of individual actors under study is relevant,
relational information can be gathered and studied.
Network analysis goes beyond measurements taken on
individuals to analyze data on patterns of relational
ties and to examine how the existence and functioning
of such ties are constrained by the social networks in
which individual actors are embedded. For example,
one might measure the relations “communicate with,”
“live near,” “feel hostility toward,” and “go to for
social support” on a group of workers. Some network
analyses are longitudinal, viewing changing social
structure as an outcome of underlying processes.
Others link individuals to events (affiliation networks),
such as a set of individuals participating in a set of
community activities.

Network structure can be studied at many different
levels: the dyad, triad, subgroup, or even the entire
network. Furthermore, network theories can be pos-
tulated at a variety of different levels. Although this
multilevel aspect of network analysis allows different
structural questions to be posed and studied simulta-
neously, it usually requires the use of methods that
go beyond the standard approach of treating each
individual as an independent unit of analysis. This is
especially true for studying a complete or whole net-
work: a census of a well-defined population of social
actors in which all ties, of various types, among all
the actors are measured. Such analyses might study
structural balance in small groups, transitive flows of
information through indirect ties, structural equiva-
lence in organizations, or patterns of relations in a set
of organizations.

For example, network analysis allows a researcher
to model the interdependencies of organization mem-
bers. The paradigm provides concepts, theories, and
methods to investigate how informal organizational
structures intersect with formal bureaucratic struc-
tures in the unfolding flow of work-related actions
of organizational members and in their evolving sets
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of knowledge and beliefs. Hence, it has informed
many of the topics of organizational behavior, such
as leadership, attitudes, work roles, turnover, and
computer-supported cooperative work.

HISTORICAL BACKGROUND

Network analysis has developed out of several
research traditions, including (a) the birth of socio-
metry in the 1930s spawned by the work of the
psychiatrist Jacob L. Moreno; (b) ethnographic efforts
in the 1950s and 1960s to understand migrations from
tribal villages to polyglot cities, especially the research
of A. R. Radcliffe-Brown; (c) survey research since
the 1950s to describe the nature of personal commu-
nities, social support, and social mobilization; and
(d) archival analysis to understand the structure of
interorganizational and international ties. Also note-
worthy is the work of Claude Lévi-Strauss, who was
the first to introduce formal notions of kinship, thereby
leading to a mathematical algebraic theory of relations,
and the work of Anatol Rapoport, perhaps the first to
propose an elaborate statistical model of relational ties
and flow through various nodes.

Highlights of the field include the adoption of
sophisticated mathematical models, especially discrete
mathematics and graph theory, in the 1940s and 1950s.
Concepts such as transitivity, structural equivalence,
the strength of weak ties, and centrality arose from net-
work research by James A. Davis, Samuel Leinhardt,
Paul Holland, Harrison White, Mark Granovetter, and
Linton Freeman in the 1960s and 1970s. Despite the
separateness of these many research beginnings, the
field grew and was drawn together in the 1970s by for-
mulations in graph theory and advances in computing.
Network analysis, as a distinct research endeavor, was
born in the early 1970s. Noteworthy in its birth are the
pioneering text by Harary, Norman, and Cartwright
(1965); the appearance in the late 1970s of network
analysis software, much of it arising at the University of
California, Irvine; and annual conferences of network
analysts, now sponsored by the International Net-
work for Social Network Analysis. These well-known
“Sunbelt” Social Network Conferences now draw as
many as 400 international participants. A number of
fields, such as organizational science, have experi-
enced rapid growth through the adoption of a network
perspective.

Over the years, the social network analytic perspec-
tive has been used to gain increased understanding
of many diverse phenomena in the social and behav-
ioral sciences, including (taken from Wasserman &
Faust, 1994)

Occupational mobility

Urbanization

World political and economic systems
Community elite decision making
Social support

Community psychology

Group problem solving

Diffusion and adoption of information
Corporate interlocking

Belief systems

Social cognition

Markets

Sociology of science

Exchange and power

Consensus and social influence
Coalition formation

In addition, it offers the potential to understand
many contemporary issues, including

The Internet

Knowledge and distributed intelligence
Computer-mediated communication
Terrorism

Metabolic systems

Health, illness, and epidemiology, especially
of HIV

Before a discussion of the details of various network
research methods, we mention in passing a number of
important measurement approaches.

MEASUREMENT
Complete Networks

In complete network studies, a census of net-
work ties is taken for all members of a prespecified
population of network members. A variety of methods
may be used to observe the network ties (e.g., survey,
archival, participant observation), and observations
may be made on a number of different types of network
tie. Studies of complete networks are often appropriate
when it is desirable to understand the action of network
members in terms of their location in a broader social
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system (e.g., their centrality in the network, or more
generally in terms of their patterns of connections to
other network members). Likewise, it may be neces-
sary to observe a complete network when properties of
the network as a whole are of interest (e.g., its degree
of centralization, fragmentation, or connectedness).

Ego-Centered Networks

The size and scope of complete networks generally
preclude the study of all the ties and possibly all the
nodes in a large, possibly unbounded population. To
study such phenomena, researchers often use survey
research to study a sample of personal networks (often
called ego-centered or local networks). These smaller
networks consist of the set of specified ties that links
focal persons (or egos) at the centers of these networks
to a set of close “associates” or alters. Such studies
focus on an ego’s ties and on ties among ego’s alters.
Ego-centered networks can include relations such as
kinship, weak ties, frequent contact, and provision of
emotional or instrumental aid. These relations can be
characterized by their variety, content, strength, and
structure. Thus, analysts might study network member
composition (such as the percentage of women pro-
viding social or emotional support, for example, or
basic actor attributes more generally); network char-
acteristics (e.g., percentage of dyads that are mutual);
measures of relational association (do strong ties with
immediate kin also imply supportive relationships?);
and network structure (how densely knit are various
relations? do actors cluster in any meaningful way?).

SNOWBALL SAMPLING
AND LINK TRACING STUDIES

Another possibility, to study large networks, is
simply to sample nodes or ties. Sampling theory for
networks contains a small number of important results
(e.g., estimation of subgraphs or subcomponents; many
originated with Ove Frank) as well as a number
of unique techniques or strategies such as snowball
sampling, in which a number of nodes are sampled,
then those linked to this original sample are sampled,
and so forth, in a multistage process. In a link-tracing
sampling design, emphasis is on the links rather than
the actors—a set of social links is followed from one
respondent to another. For hard-to-access or hidden

populations, such designs are considered the most
practical way to obtain a sample of nodes.

COGNITIVE SOCIAL STRUCTURES

Social network studies of social cognition investi-
gate how individual network actors perceive the ties
of others and the social structures in which they are
contained. Such studies often involve the measurement
of multiple perspectives on a network, for instance, by
observing each network member’s view of who is tied
to whom in the network. David Krackhardt referred to
the resulting data arrays as cognitive social structures.
Research has focused on clarifying the various ways
in which social cognition may be related to network
locations: (a) People’s positions in social structures
may determine the specific information to which they
are exposed, and hence, their perception; (b) structural
position may be related to characteristic patterns of
social interactions; (c) structural position may frame
social cognitions by affecting people’s perceptions of
their social locales.

METHODS

Social network analysts have developed methods
and tools for the study of relational data. The tech-
niques include graph theoretic methods developed
by mathematicians (many of which involve count-
ing various types of subgraphs); algebraic models
popularized by mathematical sociologists and psy-
chologists; and statistical models, which include the
social relations model from social psychology and
the recent family of random graphs first introduced
into the network literature by Ove Frank and David
Strauss. Software packages to fit these models are
widely available.

Exciting recent developments in network methods
have occurred in the statistical arena and reflect the
increasing theoretical focus in the social and behav-
ioral sciences on the interdependence of social actors
in dynamic, network-based social settings. There-
fore, a growing importance has been accorded the
problem of constructing theoretically and empirically
plausible parametric models for structural network
phenomena and their changes over time. Substantial
advances in statistical computing are now allowing
researchers to more easily fit these more complex
models to data.
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SOME NOTATION

In the simplest case, network studies involve a single
type of directed or nondirected tie measured for all pairs
of anode set N = {1, 2, ..., n} of individual actors.
The observed tie linkingnodei tonode j (i, j € N)can
be denoted by x;; and is often defined to take the value
1 if the tie is observed to be present and O otherwise.
The network may be either directed (in which case
x;j and x;; are distinguished and may take different
values) or nondirected (in which case x;; and x;; are
not distinguished and are necessarily equal in value).
Other cases of interest include the following:

1. Valued networks, where x;; takes values in the
set{0,1,...,C —1}.

2. Time-dependent networks, where x;;; repre-
sents the tie from node i to node j at time 7.

3.  Multiple relational or multivariate networks,
where x;;r represents the tie of type k from
node i tonode j (withk € R ={1,2,...,r},
a fixed set of types of tie).

In most of the statistical literature on network
methods, the set N is regarded as fixed and the network
ties are assumed to be random. In this case, the tie
linking node i to node j may be denoted by the random
variable X;; and the n x n array X = [X;;] of random
variables can be regarded as the adjacency matrix of a
random (directed) graph on N. The state space of all
possible realizations of these arrays is €2,,. The array
X = [x;;] denotes a realization of X.

GRAPH THEORETIC TECHNIQUES

Graph theory has played a critical role in the
development of network analysis. Graph theoreti-
cal techniques underlie approaches to understanding
cohesiveness, connectedness, and fragmentation in
networks. Fundamental measures of a network include
its density (the proportion of possible ties in the
network that are actually observed) and the degree
sequence of its nodes. In a nondirected network,
the degree d; of node i is the number of distinct
nodes to which node i is connected (d; = Xjenx;j).
In a directed network, sequences of indegrees
(Xjenxji) and outdegrees (Xjcnx;j) are of interest.
Methods for characterizing and identifying cohesive
subsets in a network have depended on the notion of
a clique (a subgraph of network nodes, every pair
of which is connected) as well as on a variety of

generalizations (including k-clique, k-plex, k-core,
L S-set, and k-connected subgraph).

Our understanding of connectedness, connectivity,
and centralization is also informed by the distribution
of path lengths in a network. A path of length k from
one node i to another node j is defined by a sequence
i = i1,i2,...,ig+1 = j of distinct nodes such that
i and ip4| are connected by a network tie. If there
is no path from i to j of length n — 1 or less, then
j is not reachable from i and the distance from i to
Jj is said to be infinite; otherwise, the distance from
i to j is the length of the shortest path from i to
j. A directed network is strongly connected if each
node is reachable from each other node; it is weakly
connected if, for every pair of nodes, at least one of
the pair is reachable from the other. For nondirected
networks, a network is connected if each node is reach-
able from each other node, and the connectivity, k, is
the least number of nodes whose removal results in a
disconnected (or trivial) subgraph.

Graphs that contain many cohesive subsets as well
as short paths, on average, are often termed small world
networks, following early work by Stanley Milgram,
and more recent work by Duncan Watts. Characteri-
zations of the centrality of each actor in the network
are typically based on the actor’s degree (degree
centrality), on the lengths of paths from the actor
to all other actors (closeness centrality), or on the
extent to which the shortest paths between other actors
pass through the given actor (betweenness central-
ity). Measures of network centralization signify the
extent of heterogeneity among actors in these different
forms of centrality.

ALGEBRAIC TECHNIQUES

Closely related to graph theoretic approaches is
a collection of algebraic techniques that has been
developed to understand social roles and structural reg-
ularities in networks. Characterizations of role have
developed in terms of mappings on networks, and
descriptions of structural regularities have been facili-
tated by the construction of algebras among labeled
network walks. An important proposition about what
it means for two actors to have the same social role
is embedded in the notion of structural equivalence:
Two actors are said to be structurally equivalent if
they relate to and are related by every other network
actor in exactly the same way (thus, nodes i and j are
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structurally equivalent if, for all k € N, x;; = x;; and
Xk = Xij). Generalizations to automorphic and regu-
lar equivalence are based on more general mappings
on N and capture the notion that similarly positioned
network nodes are related to similar others in the
same way.

Approaches to describing structural regularities in
multiple networks have grown out of earlier charac-
terizations of structure in kinship systems, and can be
defined in terms of labeled walks in multiple networks.
Two nodes i and j are connected by a labeled walk of
type kiky - - - ky if there is a sequence of nodes i =
i1,i2,...,ip41 = J such that i, is connected to iy,
by a tie of type k, (note that the nodes in the sequence
need not all be distinct, so that a walk is a more general
construction than a path). Each sequence k4, - - - kj, of
tie labels defines a derived network whose ties signify
the presence of labeled walks of that specified type
among pairs of network nodes. Equality and ordering
relations among these derived networks lead to various
algebraic structures (including semigroups and par-
tially ordered semigroups) and describe observed
regularities in the structure of walks and paths in
the multiple network. For example, transitivity in a
directed network with ties of type k is a form of struc-
tural regularity associated with the observation that
walks of type kk link two nodes only if the nodes are
also linked by a walk of type k.

STATISTICAL TECHNIQUES

A simple statistical model for a (directed) graph
assumes a BERNOULLI distribution, in which each edge,
or tie, is statistically independent of all others and gov-
erned by a theoretical probability P;;. In addition to
edge independence, simplified versions also assume
equal probabilities across ties; other versions allow the
probabilities to depend on structural parameters. These
distributions often have been used as models for at least
40 years, but are of questionable utility because of the
independence assumption.

Dyadic Structure in Networks

Statistical models for social network phenomena
have been developed from their edge-independent
beginnings in a number of major ways. The p; model
recognized the theoretical and empirical importance

of dyadic structure in social networks, that is, of the
interdependence of the variables x;; and x j;. This class
of Bernoulli dyad distributions and their generaliza-
tion to valued, multivariate, and time-dependent forms
gave parametric expression to ideas of reciprocity and
exchange in dyads and their development over time.
The model assumes that each dyad (x;;, x;;) is inde-
pendent of every other and, in a commonly constrained
form, specifies

P(X =x)
= TTi<jexp |:)\.l'j +6 (ZX,’j) +p (Z)Cijx]'i)
i<j i<j
+ o (ZXU) + B, (injxji) ]
Jj i

ey

where 6 is a density parameter, p is a reciprocity
parameter, the parameters «; and f; reflect individual
differences in expansiveness and popularity, and A;;
ensures that probabilities for each dyad sumto 1. This is
a LOG-LINEAR MODEL and easily fit. Generalizations of
this model are numerous, and include stochastic block
models, representing hypotheses about the interdepen-
dence of social positions and the patterning of network
ties; mixed models, such as p,; and latent space models
for networks.

Null Models for Networks

The assumption of dyadic independence is ques-
tionable. Thus, another series of developments has
been motivated by the problem of assessing the
degree and nature of departures from simple structural
assumptions like dyadic independence. A number of
conditional uniform random graph distributions were
introduced as null models for exploring the struc-
tural features of social networks. These distributions,
denoted by U|Q, are defined over subsets Q of the
state space €2, of directed graphs and assign equal
probability to each member of Q. The subset Q is
usually chosen to have some specified set of proper-
ties (e.g., a fixed number of mutual, asymmetric, and
null dyads). When Q is equal to €2,, the distribution
is referred to as the uniform (di)graph distribution,
and is equivalent to a Bernoulli distribution with
homogeneous tie probabilities. Enumeration of the
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members of O and simulation of U|Q are often
straightforward, although certain cases, such as the
distribution that is conditional on the indegree and out-
degree of each node i in the network, require more
complicated approaches.

A typical application of these distributions is to
assess whether the occurrence of certain higher-order
(e.g., triadic) features in an observed network is
unusual, given the assumption that the data arose from
a uniform distribution that is conditional on plausi-
ble lower-order (e.g., dyadic) features. This general
approach has also been developed for the analysis
of multiple networks. The best known example is
probably Frank Baker and Larry Hubert’s Quadratic
Assignment Procedure (QAP) for networks. In this
case, the association between two graphs defined on
the same set of nodes is assessed using a uniform multi-
graph distribution that is conditional on the unlabeled
graph structure of each constituent graph.

Extradyadic Local Structure in Networks

A significant step in the development of paramet-
ric statistical models for social networks was taken by
Frank and Strauss (1986) with the introduction of the
class of Markov random graphs. This class of mod-
els permitted the parameterization of extradyadic local
structural forms and so allowed a more explicit link
between some important theoretical propositions and
statistical network models. These models are based on
the fact that the Hammersley-Clifford theorem pro-
vides a general probability distribution for X from a
specification of which pairs (X;;, X1) of tie random
variables are conditionally dependent, given the values
of all other random variables.

Specifically, define a dependence graph D with node
set ND) = {(X;;: i,j € N,i # j)} and edge set
ED) = {(Xij, Xx1): X;j and X are assumed to be
conditionally dependent, given the rest of X}. Frank
and Strauss used D to obtain a model for Pr (X = x),
denoted p* by later researchers, in terms of parameters
and substructures corresponding to cliques of D. The
model has the form

Pr(X = x) = p*(x)

= (1/c)exp|: >

PON(D)

CYPZP(x)j| (@

where

1. The summation is over all cliques P of D [with
acligue of D defined as anonempty subset P of
N (D) such that |P| = 1 or (X;;, Xx1) € E(D)
for all X;;, Xx1 € P].

2. zp(x) = My, epxij is the (observed) network
statistic corresponding to the clique P of D

3. ¢ =Y exp{>papzp(x)} is a normalizing
quantity.

One possible dependence assumption is Markov, in
which (X;;, Xx1) € E(D) whenever {i, j}N{k, [} # @.
This assumption implies that the occurrence of a net-
work tie from one node to another is conditionally
dependent on the presence or absence of other ties
in a local neighborhood of the tie. A Markovian
local neighborhood for X;; comprises all possible ties
involving i and/or j. Many other dependence assump-
tions are also possible, and the task of identifying
appropriate dependence assumptions in any modeling
venture poses a significant theoretical challenge.

These random graph models permit the parameteri-
zation of many important ideas about local structure
in univariate social networks, including transitivity,
local clustering, degree variability, and centralization.
Valued, multiple, and temporal generalizations also
lead to parameterizations of substantively interesting
multirelational concepts, such as those associated with
balance and clusterability, generalized transitivity and
exchange, and the strength of weak ties. Pseudo-
maximum likelihood estimation is easy; maximum
likelihood estimation is difficult, but not impossible.

Dynamic Models

A significant challenge is to develop models for
the emergence of network phenomena, including the
evolution of networks and the unfolding of individual
actions (e.g., voting, attitude change, decision mak-
ing) and interpersonal transactions (e.g., patterns of
communication or interpersonal exchange) in the con-
text of long-standing relational ties. Early attempts
to model the evolution of networks in either dis-
crete or continuous time assumed dyad independence
and Markov processes in time. A step toward con-
tinuous time MARKOV CHAIN models for network
evolution that relaxes the assumption of dyad inde-
pendence has been taken by Tom Snijders and col-
leagues. This approach also illustrates the potentially
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valuable role of simulation techniques for models
that make empirically plausible assumptions; clearly,
such methods provide a promising focus for future
development. Computational models based on simu-
lations are becoming increasingly popular in network
analysis; however, the development of associated
model evaluation approaches poses a significant
challenge.

Current research (as of 2003), including future
challenges, such as statistical estimation of complex
model parameters, model evaluation, and dynamic sta-
tistical models for longitudinal data, can be found in
Carrington, Scott, and Wasserman (2003). Applica-
tions of the techniques and definitions mentioned here
can be found in Scott (1992) and Wasserman and Faust
(1994).

—Stanley Wasserman and Philippa Pattison

AUTHOR’S NOTE: Research supported by the U.S. Office of Naval
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NEURAL NETWORK

Neural networks are adaptive statistical models
based on an analogy with the structure of the brain.
They are adaptive because they can learn to esti-
mate the PARAMETERS of some population using a
small number of exemplars (one or a few) at a time.
They do not differ essentially from standard statistical
MODELS. For example, one can find neural network
architectures akin to DISCRIMINANT ANALYSIS, PRIN-
CIPAL COMPONENTS ANALYSIS, LOGISTIC REGRESSION,
and other techniques. In fact, the same mathemati-
cal tools can be used to analyze standard statistical
models and neural networks. Neural networks are used
as statistical tools in a variety of fields, including
psychology, statistics, engineering, econometrics, and
even physics. They are used also as models of cognitive
processes by neuro- and cognitive scientists.

Basically, neural networks are built from simple
units, sometimes called neurons or cells by analogy
with the real thing. These units are linked by a set
of weighted connections. Learning is usually accom-
plished by modification of the connection weights.
Each unit CODES or corresponds to a feature or a char-
acteristic of a pattern that we want to analyze or that
we want to use as a PREDICTOR VARIABLE.

These networks usually organize their units into
several layers. The first layer is called the input layer,
and the last one is the output layer. The intermedi-
ate layers (if any) are called the hidden layers. The
information to be analyzed is fed to the neurons of
the first layer and then propagated to the neurons
of the second layer for further processing. The result
of this processing is then propagated to the next layer
and so on until the last layer. Each unit receives some
information from other units (or from the external
world through some devices) and processes this infor-
mation, which will be converted into the output of
the unit.

The goal of the network is to learn or to discover
some association between input and output patterns,
or to analyze, or to find the structure of the input
patterns. The learning process is achieved through the
modification of the connection weights between units.
In statistical terms, this is equivalent to interpreting the
value of the connections between units as parameters
(e.g., like the values of a and b in the REGRESSION
equation y = a + bx) to be estimated. The learning



