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Consumer behavior

In the theory of the firm, the demand (and other) functions were derived
from a model of profit-maximizing or cost-minimizing behavior and a
specification of the underlying technological constraints.

In the theory of the consumer, we will derive demand (and other) functions
by considering a model of utility-maximizing behavior coupled with a
description of the underlying economic constraints.



Consumer preferences

If we want to analyze utility-maximizing behavior, we first need to discuss
consumer preferences. And to discuss preferences we need to define
consumption bundles and a consumption set.

Consumption bundle: a list of consumption goods, described by the vector
x in Rk

+, where k is the number of different goods, and element xi ≥ 0 reflects
the specific consumption for good i = 1, ..., k .

Consumption set: the set of all possible consumption bundles x that a
consumer can hypothetically choose. This set is denoted by X,

X = {x in Rk
+ : x can be hypothetically chosen}.



Consumer preferences

The consumer is assumed to have preferences on x in X. We assume that
those preferences are represented by a binary relationship.

Let x 6= y be two bundles in X, then the binary relationships are:

x � y x is better than y
x � y x is weakly better than y
x ∼ y indifferent between x and y
x � y x is weakly worse than y
x ≺ y x is worse than y



Assumptions on preferences

1. Completeness: for all x and y in X, either x � y or y � x or both.

This ensures that the consumer can make comparisons: The consumer has
the ability and information to evaluate alternatives.

2. Transitivity: for all x, y and z in X, if x � y and y � z, then x � z.

This ensures that choices are consistent: pairwise comparisons are linked
together in a consistent way.

Completeness and Transitivity imply that the consumer can completely rank
any finite number of x in X, from best to worst, possibly with ties.

3. Continuity: for all y in X, the sets {x : x � y} and {x : x � y} are closed
sets.

This ensures the absence of discontinuous consumption behavior. Continuity
mostly speaks to the mathematical aspects of representing preferences by a
utility function.



Consumer preferences in a graph

The graph above reflects a hypothetical set of preferences over bundles
x = (x1, x2) that satisfy the three assumptions: Completeness, Transitivity,
and Continuity (and local non-satiation).



Additional assumptions on preferences

4. Monotonicity (strict): if x ≥ y and x 6= y then x � y.

This implies that “at least as much of every good, and strictly more of some
good(s), is strictly better”. If free disposal of unwanted goods is allowed, then
this assumption seems harmless.

5. Convexity (strict): given x 6= y 6= z in X, if x � z and y � z, then
tx + (1− t)y � z for all 0 < t < 1.

This implies that a consumers prefers a “balanced” consumption bundle
instead of an “extreme” bundle: The weighted average (or mixture) of bundles
tx + (1− t)y is preferred to the extreme bundle z.



Consumer preferences in a graph

The graph above reflects a hypothetical set of preferences over bundles
x = (x1, x2) that satisfy the four assumptions: Completeness, Transitivity,
Continuity, and Monotonicity.



Consumer preferences in a graph

The graph above reflects a hypothetical set of preferences over bundles
x = (x1, x2) that satisfy the five assumptions: Completeness, Transitivity,
Continuity, Monotonicity, and Convexity.



From preferences to utility function

Debreu (1954) has shown that under the three assumptions Completeness,
Transitivity and Continuity, there exists a continuous utility function that
represent those preferences.

Existence of a utility function: if preferences are Complete, Transitive, and
Continuous, there exists a utility function u(x) : Rk

+ → R that represents
those preferences. This implies that there exists a utility function u(x) that
satisfies u(x) ≥ u(y)↔ x � y.

A utility function is a convenient way to describe preferences. For instance,
with a utility function we can use the method of Lagrange to maximize u(x) by
choosing the optimal consumption bundles subject to economic constraints.

The additional assumptions Monotonicity and Convexity guarantee that the
utility function has the shape we are used to. This makes sure that the SOCs
of the constrained maximization problem are met.



Indifference curve

A utility function u(x) is often represented by an indifference curve. This is
simply a level set for the utility function.

Indifference curve: all consumption bundles that give utility level u0,

I(u0) = {x : u(x) = u0}.

An indifference curve for the consumer is analogous to the isoquant for the
firm.



The ordinal character of utility functions

The only relevant feature of a utility function is its ordinal character: if some
function u(x) represents a consumer’s preferences, then so will the function
u′(x) = u(x) + 5. That is, if u(x) satisfies u(x) ≥ u(y)↔ x � y then u′(x)
also satisfies u′(x) ≥ u′(y)↔ x � y .

No interpretation should be given to the actual numbers that are given by
u(x), only to the ordering of those numbers.

The above implies that the utility function is invariant to positive
monotonic transformations: let u(x) be a utility function that represents a
consumer’s preferences. Then g(u(x)) also represents that consumer’s
preferences if g : R → R is a positive monotonic transformation: u(x) > u(y)
implies g(u(x)) > g(u(y)).



Exercise

Assume completeness, transitivity, continuity, monotonicity, and convexity.

1. Show that indifference curves must be downwards sloping.

2. Show that two indifference curves cannot cross.

3. Show that indifference curves become less steep as we move downward
and to the right along them.



Marginal utility

Consider a setting with two goods, so that u(x) = u(x1, x2).

Marginal utility of good 1 or 2: how much does utility increase if we increase
the consumption of good 1 or 2.

MUi =
∂u(x)

∂xi
, for i = 1, 2.



Marginal rate of substitution

Marginal rate of substitution: How easy (or difficult) is it for a consumer to
change between the consumption of x1 and x2 while keeping utility constant?

Let x2(x1) be the indifference curve at utility level u = u0, then:

MRS =
∂x2(x1)

∂x1
.

x2(x1) traces all bundles such that u(x1, x2) = u0. Hence, x2(x1) satisfies the
identity u(x1, x2(x1)) = u0, so that the total derivative towards x1 is zero:

∂u(x)

∂x1
+
∂u(x)

∂x2

∂x2(x1)

x1
= 0.

Hence, we can get an expression for the MRS without having to find x2(x1):

MRS =
∂x2(x1)

∂x1
= −

∂u(x)
∂x1
∂u(x)
∂x2

= −MU1

MU2
.

The MRS for the consumer is analogous to the TRS for the firm.



Marginal rate of substitution

We can write that:

MRS = −MU1

MU2
.

Imagine that MU1 = 2 and MU2 = 1. Then MRS = −MU1
MU2

= − 2
1 = −2. Note

that we can also reason this intuitively from MRS = ∂x2(x1)
∂x1

:

• If consumer increases x1 by 1, then utility increases by 2:
MU1 = ∆U

∆x1
= 2→ ∆U = 2×∆x1 → and ∆x1 = 1, so ∆U = 2.

• Consumer needs to decrease x2 by 2 as to keep utility constant:
MU2 = ∆U

∆x2
= 1→ ∆U = 1×∆x2 → and if ∆x2 = −2, then ∆U = −2.

• Hence, MRS = ∆x2
∆x1

= −2
1 = −2.



Exercise

1. Suppose MU1 = 9 and MU2 = 3 at utility level u = u0. The consumer
increases x1 by 2. How much does the consumer need to decrease x2 as to
keep utility at level u0?

2. Confirm that in the example above we have:

−MU1

MU2
=

∆x2

∆x1
.



Consumer behavior

We will generally assume that consumers aim to maximize utility. More
specifically, we will assume that the consumer will want to choose the
bundle x from the set of affordable alternatives to maximize utility.



Budget constraint

Budget constraint: Let m be the budget of a consumer, and let p in Rk
+ be

the vector of fixed prices for the k goods. Then we can define the budget
constraint, or the set of affordable alternatives, as:

B = {x : px = m}.

Consider a setting with two goods, then we can write B as:

B = {(x1, x2) : p1x1 + p2x2 = m}.

Note that for any fixed m, we can think of B as a level set, and of the budget
constraint as an isobudget line. The constraint gives us all bundles (x1, x2)
that cost m:

B = {(x1, x2) : x2 =
(m

p2

)
−
(p1

p2

)
x1}.

The intercept of the budget constraint
( m

p2

)
gives the budget in terms of the

price of x2. The slope of the budget line
( ∂x2(x1)

∂x1
= p1

p2

)
gives the economic

rate of substitution: when x1 increases, how much does x2 need to
decrease as to keep spending budget m.



Utility maximization

Now that we have introduced the utility function and the budget constraint, we
can write the problem of utility maximization as:

max
x

u(x),

such that px = m.

Since the only relevant feature about the utility function is its ordinal
character, the problem of utility maximization can also be interpreted as the
problem of finding the most preferred bundle.



The method of Lagrange with two goods

First, write down the Lagrangian,

L = u(x)− λ(p1x1 + p2x2 −m).

Second, differentiate L wrt each endogenous variable: x1, x2 and λ. The
FOCs for an interior solution x∗ set these derivatives to zero,

∂u(x)

∂x1
− λp1 = 0,

∂u(x)

∂x2
− λp2 = 0,

p1x1 + p2x2 −m = 0.

Third, since we have 3 unknown endogenous variables (x1, x2 and λ) and 3
FOCs, we can solve for the endogenous variables in terms of the exogenous
variables (p1, p2 and m).



The method of Lagrange with two goods

Dividing the first two FOCs by each other gives us the following optimality
condition:

p1

p2
=
∂u(x)/ ∂x1

∂u(x)/ ∂x2
.

By analyzing the Lagrange method graphically we can develop an economic
intuition for this condition and the method more generally.



The method of Lagrange graphically

The utility-maximizing consumer wants to find a point on the budget
constraint with maximal utility: this is a point where the indifference curve
is furthest to the northeast. This point x∗ is characterized by the slopes of the
two lines being equal, which is the optimality condition we have seen before:

p1

p2
=
∂u(x)/ ∂x1

∂u(x)/ ∂x2



The method of Lagrange with two goods

Recall that the optimality condition is:

p1

p2
=
∂u(x)/ ∂x1

∂u(x)/ ∂x2
.

The LHS is the economic rate of substitution
( ∂x2(x1)

∂x1
= p1

p2

)
: when x1

increases, how much does x2 need to decrease as to keep spending the
same.

The RHS is the marginal rate of substitution ( ∂x2(x1)
∂x1

= ∂u(x)/ ∂x1
∂u(x)/ ∂x2

): when x1

increases, how much does x2 need to decrease as to keep utility constant.

Hence, the optimality condition tells us that at x∗ the economic and marginal
rate of substitution need to be equal. Imagine they are not:

p1

p2
=

2
1
6= 1

1
=
∂u(x)/ ∂x1

∂u(x)/ ∂x2
,

then we can consume one unit less of x1 and one unit more of x2, so that
utility stays constant, but we still have an additional euro to spend. This
cannot be x∗.



Marshallian demand and indirect utility

Marshallian demand function x(p,m): a function that gives us the optimal
choice of consumption goods as a function of prices p and budget m.

How to get this function? From the FOCs of the Langrangian we can write x
in terms of (p,m).

Note that the Marshallian demand function is just an “ordinary” demand
function for consumption. It shows us how demand changes when prices
change, while income is kept constant. Moreover, it is a function that can in
principle be estimated with data on consumption, prices, and income.

Indirect utility function v(p,m): a function that gives us the maximum utility
achievable given prices p and budget m.

How to get this function? Substitute x(p,m) into u(x) = u(x(p,m)) = v(p,m)



Exercise

The graph below indicates the optimal consumption bundle. Imagine p1

increases.

1. Draw the new budget constraint.

2. Show the new Marshallian demand.



The Lagrange multiplier

Recall that the Lagrange multiplier λ measures how the optimal solution to
the constrained maximization problem changes when the constraint is
relaxed.

When we apply this interpretation of λ to the utility maximization problem, the
optimal solution is the indirect utility function v(p,m) and the constraint is
relaxed if we increase the budget m. Hence, the Lagrange multiplier
measures the increase in utility when we are allowed to spend more.



The Lagrange multiplier

The proof for this interpretation of λ follows from the envelope theorem.

Consider the Lagrangian with two goods,

L(p,m, x, λ) = u(x)− λ(p1x1 + p2x2 −m).

First, note that:

∂L(p,m, x, λ)

∂m
= λ.

Second, substitute the Marshallian demand functions x(p,m) and the
Lagrange multiplier λ(p,m) into the Lagrangian to obtain the Lagrangian
evaluated at the optimal point: L(p,m, x(p,m), λ(p,m)) = L(p,m). It turns
out, this is equal to:

L(p,m) =u(x(p,m))− λ(p,m)(p1x1(p,m) + p2x2(p,m)−m),

=u(x(p,m)),

=v(p,m).



The Lagrange multiplier

Third, use the logic of the envelope theorem to show that at the optimal point:

∂L(p,m)

∂m
=

∂L(·)
∂m︸ ︷︷ ︸

direct effect

+
∂L(·)
∂x1

∂x1(·)
∂m

+
∂L(·)
∂x2

∂x2(·)
∂m

+
∂L(·)
∂λ

∂λ(·)
∂m︸ ︷︷ ︸

indirect effect

,

=
∂L(·)
∂m

,

=λ(p,m),

as the indirect effects are zero because of the FOCs of the Lagrangian.

Since L(p,m) = v(p,m), we conclude that:

∂L(p,m)

∂m
=
∂v(p,m)

∂m
= λ(p,m).



The indirect utility function

Indirect utility function v(p,m): maximum utility for each income m.

Since preferences satisfy monotonicity, indirect utility is increasing in m: If m
increases, x increases, and so u increases. Hence, for every v in its range
there is only one x in its domain. Hence, the indirect utility function has an
inverse function. Write the inverse of u = v(p,m) as m = v−1(p, u) = e(p, u)

Expenditure function e(p, u): minimum income required to achieve utility u.



Expenditure minimization

You can also get the expenditure function e(p, u) by solving the consumers’
choice problem via expenditure minimization.

Expenditure minimization problem (EMP): find x∗ that minimizes
expenditure px subject to the utility constraint u(x) = u.

min
x

px,

such that u(x) = u.

Note that EMP is identical to cost minimization. So the Lagrange method,
intuitions, and properties from Chapter 4 apply to EMP.

Utility maximization problem (UMP): find x∗ that maximizes utility u(x)
subject to the budget constraint px = m.

max
x

u(x),

such that px = m.



EMP=UMP

EMP: Given the indifference curve, slide the budget constraint to the
south-west region until it just touches the indifference curve.

UMP: Given the budget constraint, slide the indifference curve to the
north-east region until it just touches the budget constraint.

Under the assumptions we made, EMP and UMP will find the same optimal
point x∗. This is referred to as duality.



The method of Lagrange for the EMP

This slide shows the method of Lagrange for the EMP. Note that the method,
its intuition, and properties are identical to the cost minimization problem.

First, write down the Lagrangian,

L = p1x1 + p2x2 − λ(u(x)− u)

Second, differentiate L wrt each endogenous variable: x1, x2 and λ. The
FOCs for an interior solution x∗ set these derivatives to zero,

p1 − λ
∂u(x)

∂x1
= 0,

p2 − λ
∂u(x)

∂x2
= 0,

u(x)− u = 0.

Third, since we have 3 unknown endogenous variables (x1, x2 and λ) and 3
FOCs, we can solve for the endogenous variables in terms of the exogenous
variables (p1, p2 and u).



The Lagrange multiplier

Recall (again) that the Lagrange multiplier λ measures how the optimal
solution to the constrained maximization problem changes when the
constraint is relaxed.

When we apply this interpretation of λ to the expenditure minimization
problem, the optimal solution is the expenditure function e(p,m) and the
constraint is relaxed if we increase utility u. Hence, the Lagrange multiplier
measures how expenditures (budget) increase when we are allowed
additional utility.



Hicksian demand and expenditure function

Hicksian demand function h(p, u): a function that gives us the optimal
choice of consumption goods as a function of prices p and utility u.

How to get this function? From the FOCs of the Lagrangian we can write x in
terms of (p, u).

The Hicksian demand function is not an “ordinary” demand function. It shows
us how demand changes when prices change, while utility is kept constant.
However, if one wants to keep utility constant while prices change, one needs
to change/compensate income.

This makes the Hicksian demand a theoretical concept, and often referred to
as compensated demand. Moreover, since utility is not observed, the
Hicksian demand function cannot be estimated.

Expenditure function e(p, u): a function that gives us the minimum income
required to achieve utility u at prices p .

How to get this function? Substitute h(p, u) into px = ph(p, u) = e(p, u).



Exercise

The graph below indicates the optimal consumption bundle. Imagine p1

increases.

1. Draw the new budget constraint.

2. Show the new Hicksian demand.



Two important identities

UMP: Let x(p,m) and v(p,m) be the solutions.

EMP: Let h(p, u) and e(p, u) be the solutions.

Duality ensures that (1) x(p,m) = h(p, u) if u = v(p,m), and
(2) h(p, u) = x(p,m) if m = e(p, u).



Two important identities

(1) xi (p,m) = hi (p, v(p,m)): The Marshallian demand at income m is the
same as the Hicksian demand at utility v(p,m).

(2) hi (p, u) = xi (p, e(p, u)): The Hicksian demand at utility u is the same as
the Marshallian demand at income e(p, u).

It is identity (2) that gives rise to the term compensated demand for the
Hicksian demand: It is the Marshallian demand when income changes are
arranged as to achieve some target level of utility.



Marshallian demand from indirect utility

If you were given the Marshallian demand x(p,m), finding the indirect utility
function is easy: just substitute the Marshallian demand into u(x),

u(x(p,m)) =v(p,m).

It turns out that if you know the indirect utility function, it also easy to find the
Marshallian demand. This is what Roy’s identity shows us.



Roy’s identity

Roy’s identity shows that we can find the Marshallian demand function from
the indirect utility function as follows:

−∂v(p,m)/ ∂pi

∂v(p,m)/ ∂m
= xi (p,m).

In words, Roy’s identity is that the Marshallian demand function can be
found from the fraction that contains the derivative of the indirect utility
function towards the price and income. This is similar to Hotelling’s and
Shephard’s lemma, but then applied to utility maximization.



Proof Roy’s identity

Consider the Lagrangian with two goods,

L(p,m, x, λ) = u(x)− λ(p1x1 + p2x2 −m).

First, note that:

∂L(p,m, x, λ)

∂p1
=− λx1,

∂L(p,m, x, λ)

∂m
=λ.

Second, substitute the Marshallian demand functions x(p,m) and the
Lagrange multiplier λ(p,m) into the Lagrangian to obtain the Lagrangian
evaluated at the optimal point: L(p,m, x(p,m), λ(p,m)) = L(p,m). It turns
out, this is equal to:

L(p,m) =u(x(p,m))− λ(p,m)(p1x1(p,m) + p2x2(p,m)−m),

=u(x(p,m)),

=v(p,m).



Proof Roy’s identity

Third, use the logic of the envelope theorem to show that at the optimal point:

∂L(p,m)

∂p1
=

∂L(·)
∂p1︸ ︷︷ ︸

direct effect

+
∂L(·)
∂x1

∂x1(·)
∂p1

+
∂L(·)
∂x2

∂x2(·)
∂p1

+
∂L(·)
∂λ

∂λ(·)
∂p1︸ ︷︷ ︸

indirect effect

=
∂L(·)
∂p1

= −λ(p,m)x1(p,m),

∂L(p,m)

∂m
=

∂L(·)
∂m︸ ︷︷ ︸

direct effect

+
∂L(·)
∂x1

∂x1(·)
∂m

+
∂L(·)
∂x2

∂x2(·)
∂m

+
∂L(·)
∂λ

∂λ(·)
∂m︸ ︷︷ ︸

indirect effect

=
∂L(·)
∂m

= λ(p,m),

as the indirect effects are zero because of the FOCs of the Lagrangian.

Since L(p,m) = v(p,m), we conclude that:

−∂L(p,m)/ ∂pi

∂L(p,m)/ ∂m
= −∂v(p,m)/ ∂pi

∂v(p,m)/ ∂m
= xi (p,m).



Exercise

Consider the following utility maximization problem:

max
x1,x2

xα1 x1−α
2 ,

such that p1x1 + p2x2 = m.

1. Find the Marshallian demand functions.

2. Find the indirect utility function.

3. Find λ(p,m). Show that the derivative of the indirect utility function
towards m is equal to λ(p,m). Use this to provide an economic interpretation
of λ(p,m).

4. Show Roy’s identity for x1(p,m).



Exercise

Consider the following expenditure minimization problem:

min
x1,x2

p1x1 + p2x2,

such that xα1 x1−α
2 = u.

1. Find the Hicksian demand functions.

2. Find the expenditure function.

3. Plug the indirect utility function into the Hicksian demand function. What
do you find? Plug the expenditure function into the Marshallian demand
function. What do you find?



Homework exercises

Exercises: 7.4(a)-(b), 8.5, and exercises on the slides


