Mathematical Economics - 1st Semester - 2023/2024

More exercises - Group III

1. The initial value problem $\left\{\begin{array}{l}y^{\prime}=\sqrt{y-1} \\ y(0)=1\end{array}\right.$ admits two different solutions.
(a) Find explicitly the two different solutions.
(b) Explain why this does not contradict the Existence and Uniqueness Theorem for ordinary differential equations.
2. Assume that $a>b>0$ and the Initial value problem (IVP) where p is a function of t

$$
p^{\prime}=a p-b p^{2}, \quad p(0)=p_{0}>0
$$

(a) With respect to the differential equation above, what is the name of a / b ? (This IVP is called the logistic law).
(b) Write the unique solution of the differential equation, say $p(t)$.
(c) Write the domain of p when $p_{0}<a / b$.
(d) Write the domain of p when $p_{0}>a / b$.
(e) Compute $\lim _{t \rightarrow+\infty} p(t)$.
3. Consider the differential equation (y is a function of x):

$$
y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x}
$$

(a) Show that $y(x)=\frac{1}{2} x^{2} e^{2 x}$ is a solution of the differential equation.
(b) Write the general solution of the differential equation.
4. Consider the following differential equation where y is a function of x :

$$
y^{\prime \prime}+3 y^{\prime}=0
$$

(a) Find the solutions of the differential equations whose graph in the plane $\left(y, y^{\prime}\right)$ lie in a line.
(b) Find the solution of the differential equation such that $y(0)=1, y^{\prime}(0)=-3$. Represent it in the plane (t, y)
5. Consider the following differential equation (y is a function of t)

$$
y^{\prime \prime}+4 y^{\prime}+5 y=1
$$

(a) Find a particular solution of the differential equation.
(b) Find the general solution of the differential equation.
(c) If $y(0)=6 / 5$ and $y^{\prime}(0)=-2$, trace the graph of the unique solution of the differential equation.
6. Consider the following differential equation and write its general solution.
(a)

$$
\left\{\begin{array}{l}
\dot{x}=x+2 y \\
\dot{y}=x+y
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{l}
\dot{x}=-x \\
\dot{y}=x-y
\end{array}\right.
$$

(c)

$$
\left\{\begin{array}{l}
\dot{x}=2 x+y \\
\dot{y}=-2 x+4 y
\end{array}\right.
$$

7. Find the linearisation of the following systems around their equilibria. Classify the equilibria according to their Lyapunov stability.
(a)

$$
\left\{\begin{array}{l}
\dot{x}=x+x^{2}+x y^{2} \\
\dot{y}=y+y^{3}
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{l}
\dot{x}=e^{x+y}-y \\
\dot{y}=-x+x y
\end{array}\right.
$$

(c)

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-\sin x-y
\end{array}\right.
$$

8. Consider the following differential equation:

$$
\left\{\begin{array}{l}
\dot{x}=1-6 y+x^{2} \\
\dot{y}=1-2 y-x^{2}
\end{array}\right.
$$

(a) Find the equilibria and determine their Lyapunov stability.
(b) Draw the null-clines.
9. Consider the following differential equation in \mathbb{R}^{3} :

$$
\left\{\begin{array}{l}
\dot{x}=-3 x-4 y+x^{2} y z \tag{1}\\
\dot{y}=4 x-3 y-x y^{2} z \\
\dot{z}=z+x y z^{2}
\end{array}\right.
$$

(a) Show that $(0,0,0)$ is an unstable equilibrium (according to Lyapunov).
(b) Draw the phase portrait associated to (1) in a small neighbourhood of $(0,0,0)$.
(c) In the phase portrait of (b), locate the local stable and the local unstable manifolds of $(0,0,0)$.
(d) Suppose that $p \in W_{\text {loc }}^{u}(0,0,0)$. What is the α-limit set of p ?
(e) Suppose that $p \in W_{\text {loc }}^{s}(0,0,0)$. What is the ω-limit set of p ?

