

Estatística II

Licenciatura em Gestão 2.º Ano/1.º Semestre 2023/2024

Aulas Teóricas N.ºs 12 e 13 (Semana 7)

Docente: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

Conteúdos Programáticos

Aulas Teóricas (Semanas 1 a 5)

• Capítulo 1: Estimação

Aulas Teóricas (Semanas 5 a 7)

• Capítulo 2: Testes de Hipóteses

Aulas Teóricas (Semanas 7 a 9)

• Capítulo 3: Modelo de Regressão Linear Aulas Teóricas (Semanas 10 a 13)

• Capítulo 4: Complementos ao Modelo de Regressão Linear

Material didático: Exercícios do Livro Murteira et al (2015), Formulário e Tabelas Estatísticas

Bibliografia: B. Murteira, C. Silva Ribeiro, J. Andrade e Silva, C. Pimenta e F. Pimenta; *Introdução à Estatística*, 2ª ed., Escolar Editora, 2015.

https://cas.iseg.ulisboa.pt

6º semana (24/10 e 26/10)

T10 - Teste de hipóteses

Hipótese simples contra hipótese composta unilateral. Testes UMP. Exemplo. Teste de hipótese simples contra hipótese composta bilateral. Exemplo.

T11 - Teste de hipóteses

Valor-p. Exemplos. Testes em universos normais: média e variância. Exemplos. Teste para 2 populações: igualdade de médias e quociente de variâncias. Exemplos.

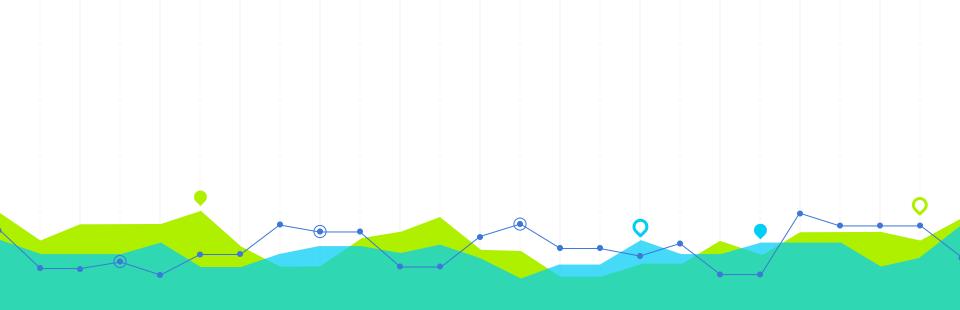
7º semana (31/10 a 02/11)

T12 - Teste de hipóteses

Testes em universos normais com amostras emparelhadas. Exemplo. Teste de hipóteses para grandes amostras. Aplicação ao universo de Bernoulli (média e diferença de médias). Exemplos.

T13 - Modelo de regressão linear

Introdução; modelo linear e linearizável; exemplos; Hipóteses básicas; estimação dos coeficientes da regressão pelos Mínimos Quadrados. Exemplo.



Testes de Hipóteses para μ (σ^2 Conhecida)

Hipóteses compostas, Estatística de Teste e Decisão

8.4 Da produção diária de determinado fertilizante tiraram-se seis pequenas porções que se analisaram para calcular a percentagem de nitrogénio. Os resultados foram os seguintes:

$$\chi_1$$
 χ_2 χ_3 χ_4 χ_5 χ_6 χ_6 χ_6 = 5.917

Sabe-se, por experiência, que o processo de análise fornece valores com distribuição que se pode considerar normal com $\sigma^2=0.25$.

- (a) Suportam as observações a garantia de que a percentagem esperada de nitrogénio, μ , é igual a 6% ao nível de significância de 10%?
- (b) Responda à alínea anterior usando o valor-p.


```
Passo o [ descrição da sinação]

X= % de nitrogénio non ferilitarie ~ ~ ~ (4,0.25)

(população nonnel, de valor esperado desconhaido

e de variancia (onlacido)

amosir de dineso 6; $\overline{x} = 5.913

A não esquedo: $\overline{x}$ is e' a nesse coise que Elx] \( E(X) = \mu \)

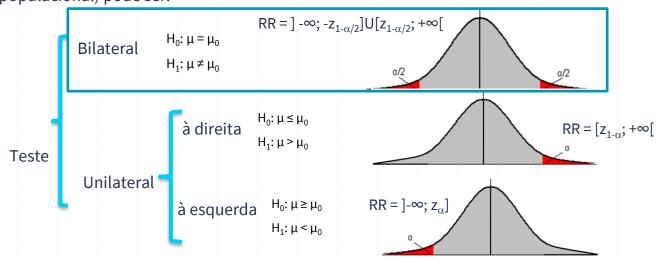
S² " " Var(x) = \sigma^2
```

Hipóteses:

```
Passol: modican quais as hipotroses que vamos Testan e quel a sismificancia luda Ho: M=6 [li-s: vamos testan a hipotrese Ho ie, se L=6] hipotrese latendara Ho: M+6 [li-s: em alternativa, vamos decidir que M+6]
```

Tipos de Testes de Hipóteses para μ (σ^2 Conhecida)

Um **teste de hipóteses paramétrico** para o parâmetro μ (valor médio ou média populacional) pode ser:



onde μ_0 é o valor numérico específico considerado em H_0 e H_1 .

Estatística de Teste:

Pesson 2: Escolhe cle v. flerel e conseque Te estatistica cle v. flerel no cap. 7:

Desnos par escolhe cle v. flerel no cap. 7:

$$\frac{\bar{x}_{-\mu}}{\sigma \sqrt{n}} \sim N(0,1)$$
 $\frac{\bar{x}_{-\mu}}{\sigma^2} \sim \chi^2_{(n-1)}$
 $\frac{\bar{x}_{-\mu}}{\sigma^2} \sim \chi^2_{(n-1)}$

IC para μ: Formulário

• POPULAÇÕES NORMAIS

TOTELIÇOLOTOR		=
Média	$\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$	$\frac{X-\mu}{S'/\sqrt{n}} \sim t(n-1)$
Diferença de médias	$\frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}} \sim N(0,1)$	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^{'2}}{m} + \frac{S_2^{'2}}{n}}} \stackrel{a}{\sim} t(v)$
	\overline{V} \overline{V}	onde ν é o maior inteiro contido em r ,
	$\frac{X_1 - X_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{\mu_1} + \frac{1}{\mu_2}}}$	$\left(\frac{{s_1'}^2}{m} + \frac{{s_2'}^2}{n}\right)^2$
	$T = \frac{\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{m} + \frac{1}{n}}}}{\sqrt{\frac{(m-1)S_1'^2 + (n-1)S_2'^2}{m+n-2}}} \sim t(m+n-2)$	$\frac{1}{m-1} \left(\frac{s_1'^2}{m} \right)^2 + \frac{1}{n-1} \left(\frac{s_2'^2}{n} \right)^2$
Variância	$\frac{nS^2}{\sigma^2} = \frac{(n-1)S'^2}{\sigma^2} \sim \chi^2(n-1)$	
Relação de variâncias	$\frac{S_1'^2}{S_2'^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F(m-1, n-1)$	

Estatística de Teste:

No presente exemplo, estamos a construir un Teste de hipstess para o volon esperado ale une População normal de variancia contecida.

V.
$$f = Z = X - LL \sim colo, L$$

Est. Teste = $Z_0 = X - 6 \sim colo, L$

(i.e., a estatistica de Teste é a variável flarel,

Estatística de Teste:

```
depois de substituído o parâmeiro en Tesse

pelo valor que consta en tto)

valor Observalo: Zo = 5.917-6 = -0.41 naviori)

n(dine-so de amostre)

L Passo 2: dist. de x + tto + saler quais os parimeiros

conecidos J
```

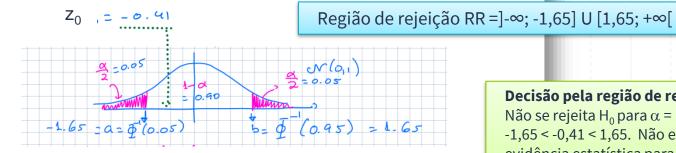
Decisão (pela região de rejeição):

PCSSO3: (DISTRICA) Cle Regio cle Rejeica

$$\frac{\alpha}{2} = 0.05$$
 $\frac{\alpha}{2} = 0.05$
 $\frac{\alpha}{2$

Decisão (pela região de rejeição):

Passo 4: Decisas sobre aceitação ou rejeição cleto



[Mariana: esté bonite a aule cle hoje?]
agrando Resposté!

Decisão pela região de rejeição:

Não se rejeita H_0 para $\alpha = 10\%$, pois -1,65 < -0,41 < 1,65. Não existe evidência estatística para afirmar que o valor médio é diferente de 6 para α = 10%.

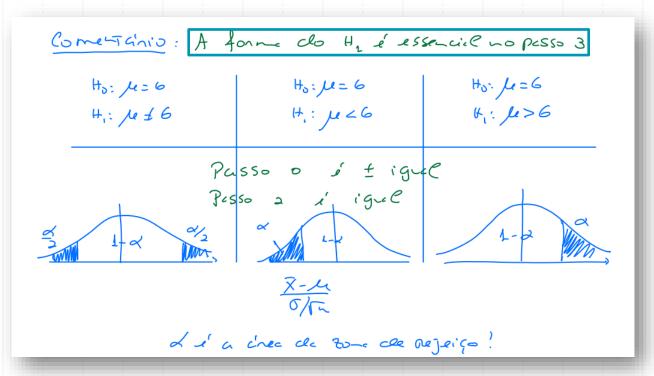
thro, como - 1-65 2 Zn c LGs, significa que porc 10% = 5% no Li evidêncies estatistices por rejectable

[Passo 4 = Region rejeices + to]

a) Sim (-1.645 < -0.408 < 1.645)

b) Valor-p = 0.6818 > 0.1

acolle		Aceitan Ho	Rejectan Ho
م بالمد	μ, ✓ -	O. K.	ERRO TIPO 1
d	40	Enno Tipo 2	0. K.



Exercício 8.4 (a): Teste t para o Valor Médio $(\sigma^2$ Conhecida)

Hipóteses

Teste Bilateral

Nota: A variável média amostral tem distribuição normal, logo este teste de hipóteses é válido.

Estatística de Teste

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

 H_0 : $\mu = 6$ versus H_1 : $\mu \neq 6$

Valor Observado da Estatística de Teste (VOE)

$$z_0 = -0,41$$

Dados:

N = 6

Média amostral = 5,917

 $\sigma^2 = 0.25$

 $\mu_0 = 6$

 $\alpha = 0.10$

 $z_{1-\alpha/2} = z_{0.95} = 1,645$

Regra: $\mathbf{z}_0 \in RR \Rightarrow Rejeita-se H_0$

Decisão

Pela região de rejeição: $z_0 = -0.41$ não pertence à região de rejeição RR =]- ∞ ; -1,645] U [1,645; + ∞ [

Pelo valor-p: Valor-p = 0.6818 > 0.10 (ver slide a seguir)

Regra: Valor-p $< \alpha \Rightarrow$ Rejeita-se H_o

Não se rejeita-se H_0 para $\alpha = 10\%$. Não existe evidência estatística para afirmar que a percentagem esperada de nitrogénio é diferente de 6% para α = 10%.

Cálculo do Quantil da Distribuição Normal de Probabilidade $1-\alpha/2$

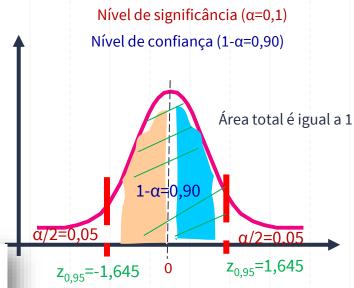


TABELA 5 – DISTRIBUIÇÃO NORMAL: $\Phi^{-1}(z)$

8	.0005	.0010	.0050	.0100	.0200	.0250	.0500	.1000	.2000	.3000	.4000
z_{ε}	3.290	3.090	2.576	2.326	2.054	1.960	1.645	1.282	.842	.524	.253
$z_{\varepsilon/2}$	3.481	3.290	2.807	2.576	2.326	2.241	1.500	1.645	1.282	1.036	.842

$$z_{\varepsilon}: P(Z>z_{\varepsilon})=\varepsilon\,;\quad z_{\varepsilon/2}: P(\mid Z\mid>z_{\varepsilon/2})=\varepsilon\,.$$

O nível de significância é igual a α = 0,10, então temse $z_{1-\alpha/2}$ = $z_{0,95}$ = 1,645

Teste bilateral: valor-p = $P(Z \le -z_0) = P(Z \le -z_0) + P(Z \ge z_0) = 2 \times P(Z \ge |z_0|)$

Exercício 8.4 (b): Valor-p guando a Estatística de Teste tem Distribuição Normal Padrão

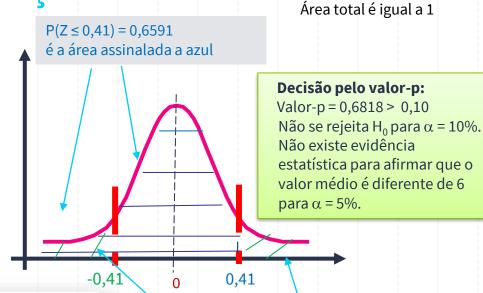
Decisão (pelo p-value):

valor-p = $P(Z \le -0.41 \text{ ou } Z \ge 0.41)$ = $2 \times P(Z \ge 0.41) = 2 \times [1 - P(Z < 0.41)]$

A tabela geral só permite obter probabilidades de quantis positivos e do tipo P(Z≤z).

Então, tem-se $P(Z \le 0.41) = 0.6591$, logo

valor-p = $2x[1-P(Z \le 0.41)] \sim 2x[1-0.6591] = 0.6818$

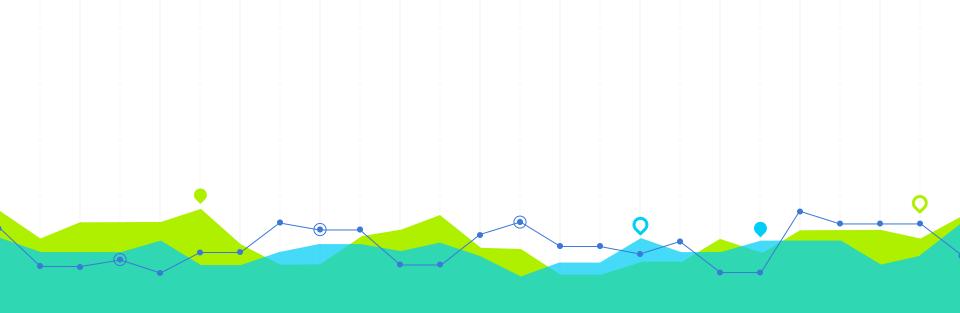


z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217/	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879

 $P(Z \le -0.41) = 1 - P(Z \le 0.41) = P(Z \ge 0.41) = 0.3409$ é a área assinalada a verde

a) Sim (-1.645 < -0.408 < 1.645)

b) Valor-p = 0.6818 > 0.1



Testes de Hipóteses para μ (σ^2 Desconhecida)

Hipóteses Compostas, Estatística de Teste e Decisão

8.6 Seja X uma variável aleatória com distribuição normal de valor esperado μ e desvio padrão σ . A partir de uma amostra de dimensão 30 dessa variável obtiveram-se os seguintes resultados:

$$\sum_{i=1}^{30} x_i = 64.0 \qquad \sum_{i=1}^{30} (x_i - \overline{x})^2 = 84.8$$

Teste ao nível de significância de 5% a hipótese $H_0: \mu = 2.0$ contra a hipótese alternativa $H_1: \mu > 2.0$.

Hipóteses:

$$\frac{\text{Possoo,1}}{\text{Ho:}} \times \text{Now}(M, \sigma^2) \qquad \text{Mos} = ?$$

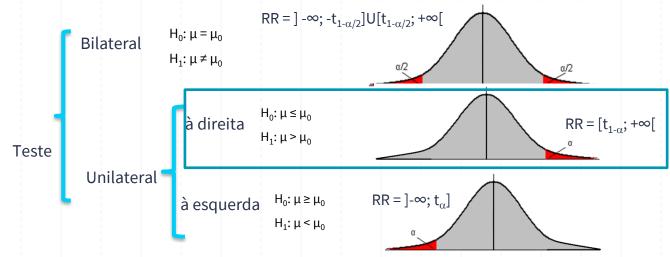
$$\text{Ho:} \quad \mu = 2.0$$

$$\text{Ho:} \quad \mu > 2.0$$

$$\alpha = 5^{\circ} \text{Ho}$$

Tipos de Testes de Hipóteses para μ (σ^2 Desconhecida)

Um **teste de hipóteses paramétrico** para o parâmetro μ (valor médio ou média populacional) pode ser:



onde μ_0 é o valor numérico específico considerado em H_0 e H_1 .

Estatística de Teste:

Passo 2: V. fluel a lest. Tesse
$$t = \frac{x - \mu}{5/\sqrt{n}} \sim t_{(29)}$$

$$T_0 = \frac{x - 2}{5/\sqrt{30}} \sim t_{(29)}$$

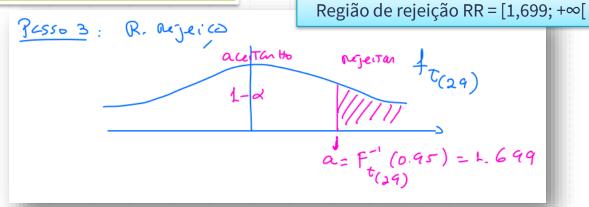
IC para μ: Formulário

Variância corrigida

• POPULAÇÕES NORMAIS

POPULAÇÕES NOR	WIAIS	$\frac{1}{n}$
Média	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$\frac{X - \mu}{S' / \sqrt{n}} \sim t(n - 1)$ $S'^2 = \frac{1}{n - 1} \sum_{i=1}^{n} (X_i - \bar{X})$
Diferença de médias	$\frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}} \sim N(0,1)$	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1'^2}{m} + \frac{S_2'^2}{n}}} \stackrel{a}{\sim} t(\nu)$
	$T = \frac{\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{m} + \frac{1}{n}}}}{\sqrt{\frac{(m-1)S_1'^2 + (n-1)S_2'^2}{m+n-2}}} \sim t(m+n-2)$	onde V é o maior inteiro contido em r , $r = \frac{\left(\frac{s_1'^2}{m} + \frac{s_2'^2}{n}\right)^2}{\frac{1}{m-1}\left(\frac{s_1'^2}{m}\right)^2 + \frac{1}{n-1}\left(\frac{s_2'^2}{n}\right)^2}$
Variância	$\frac{nS^2}{\sigma^2} = \frac{(n-1)S'^2}{\sigma^2} \sim \chi^2(n-1)$	
Relação de variâncias	$\frac{S_1'^2}{S_2'^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F(m-1, n-1)$	

Decisão (pela região de rejeição):



Decisão pela região de rejeição:

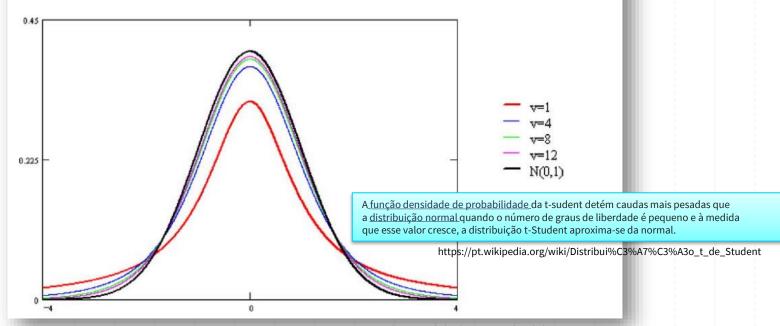
Não se rejeita H_0 para $\alpha = 5\%$, pois 0,417 < 1,699. Não existe evidência estatística para afirmar que o valor médio é superior a 2 para $\alpha = 5\%$.

Não se rejeita H_0 (0.427 < 1.699)

T-Student

Curiosidade

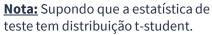
- Se a variável tem distribuição Normal na população, ou a amostra é suficientemente grande, mas não conhecemos o desvio da população, só da amostra, então ...
- ... A média amostral se distribui conforme uma t-Student
- ... A distribuição t-Student depende dos graus de liberdade (n-1), que denotamos por v



Decisão: Região de Rejeição vs Val<u>or-p</u>

Região de rejeição (RR) ou Região crítica (RC): Conjunto para o qual H₀ é rejeitada

- Teste unilateral à esquerda: RR =]-∞; t_α]
- Teste unilateral à direita: $RR = [t_{1-\alpha}; +\infty[$
- Teste bilateral: RR =] - ∞ ; - $t_{1-\alpha/2}$]U[$t_{1-\alpha/2}$; + ∞ [



Regra (considerando os valores críticos):

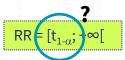
- • $t_0 \le t_\alpha \Rightarrow Rejeita$ -se H_0
- • t_0 ≥ $t_{1-\alpha}$ ⇒ Rejeita-se H_0
- • $|t_0| \ge t_{1-\alpha/2} \Rightarrow \text{Rejeita-se H}_0$

Regra: $t_0 \in RR \Rightarrow Rejeita-se H_0$

Valor-p ou P-value: Probabilidade sob H₀ de a estatística de teste tomar valores tão ou mais desfavoráveis a H₀ do que o seu valor observado

- Teste unilateral à esquerda: valor-p = P(T ≤ t₀)
- Teste unilateral à direita: valor-p = P(T ≥ t₀)
- Teste bilateral: valor-p = $P(T \le -t_0 \text{ ou } T \ge t_0) = 2 \times P(T \ge |t_0|)$

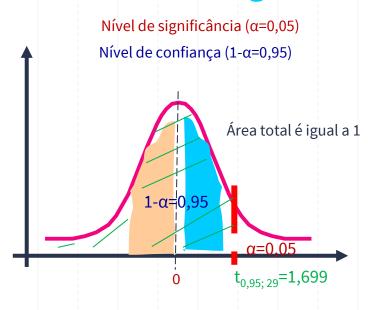
Regra: Valor-p $< \alpha \Rightarrow$ Rejeita-se H₀



Cálculo do Quantil da Distribuição t-student de Probabilidade 1- $\alpha/2$ e com n-1 g.l.'s

$$t_{n,\varepsilon}: P(X > t_{n,\varepsilon}) = \varepsilon$$

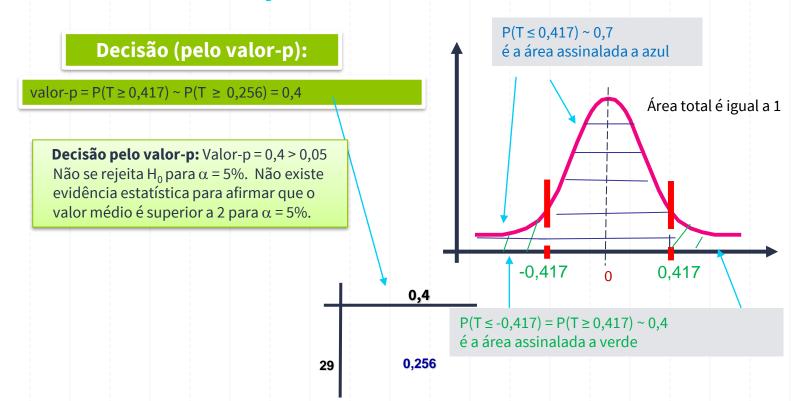
	400	250	100	050	025	010	005	001
3	.400	.250	.100	.050	.025	.010	.005	.001
n								
1	.325	1,000	3.078	6.314	12.706	31.821	63.656	318.289
2	.289	.816	1.886	2.920	4.303	6.965	9.925	22.32
3	.277	.765	1.638	2.353	3.182	4.541	5.841	10.21
4	.271	.741	1.533	2.132	2.776	3.747	4.604	7.17
5	.267	.727	1.476	2.015	2.571	3.365	4.032	5.89
6	.265	.718	1.440	1.943	2.447	3.143	3.707	5.20
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.78
8	.262	.706	1.397	1.860	2.306	2.896	3.355	4.50
9	.261	.703	1.383	1.833	2.262	2.821	3.250	4.29
10	.260	.700	1.372	1.812	2.228	2.764	3.169	4.14
11	.260	.697	1.363	1.796	2.201	2.718	3.106	4.02
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.93
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.85
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.78
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.73
16	.258	.690	1.337	1.746	2.120	2.583	2.921	3.68
17	.257	.689	1.333	1.740	2.110	2.567	2.898	3.64
18	.257	.688	1.330	1.734	2.101	2.552	2.878	3.61
19	.257	.688	1.328	1.729	2.093	2.539	2.861	3.57
20	.257	.687	1.325	1.725	2.086	2.528	2.845	3.55
21	.257	.686	1.323	1.721	2.080	2.518	2.831	3.52
22	.256	.686	1.321	1.717	2.074	2.508	2.819	3.50
23	.256	.685	1.319	1.714	2.069	2.500	2.807	3.48
24	.256	.685	1.318	1.711	2.064	2.492	2.797	3.46
25	.256	.684	1.316	1.708	2.060	2.485	2.787	3.45
26	.256	.684	1.315	1.706	2.056	2.479	2.779	3.43
27	.256	.684	1.314	1.703	2.052	2 473	2.771	3.42
28	.256	.683	1.313	1./01	2.048	2.467	2.763	3.40
29	.256	.683	1.311	1.699	2.045	2.462	2.756	3.39
30	.256	.683	1.310	1.097	2.042	2.457	2.750	3.38

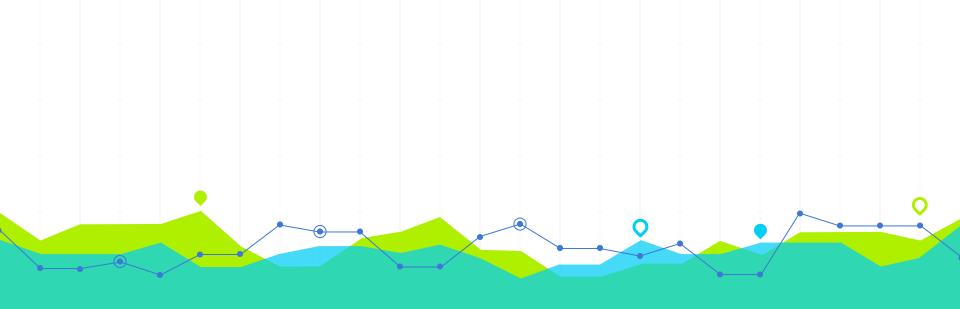


O nível de significância é igual a α = 0,05 e n-1 = 29 g.l. ´s, então tem-se $t_{1-\alpha;n-1} = t_{0,95; \, 29} = 1,699$

Teste unilateral à direita: valor-p = $P(T \ge t_0)$

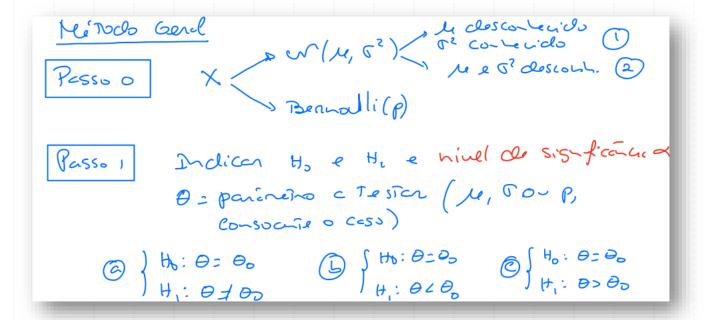
Cálculo do valor-p quando a Estatística de Teste tem Distribuição t-student com n-1 g.l.'s

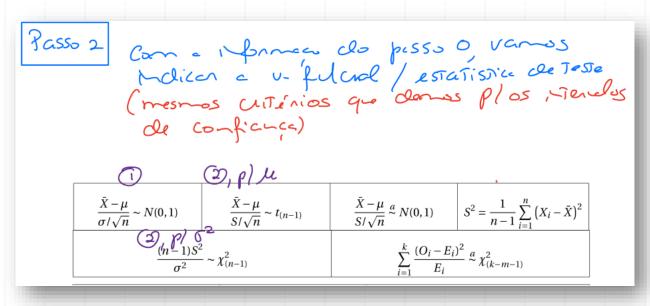




Testes de Hipóteses para μ: Resumo...

Hipóteses, Estatística de Teste e Decisão





Passo3 Com o nivel de significació de a forme de region de rejeico de region de region de region de region de rejeico, usando e disinibilida de la flact

(a) -> Zone de réjeico bileteral

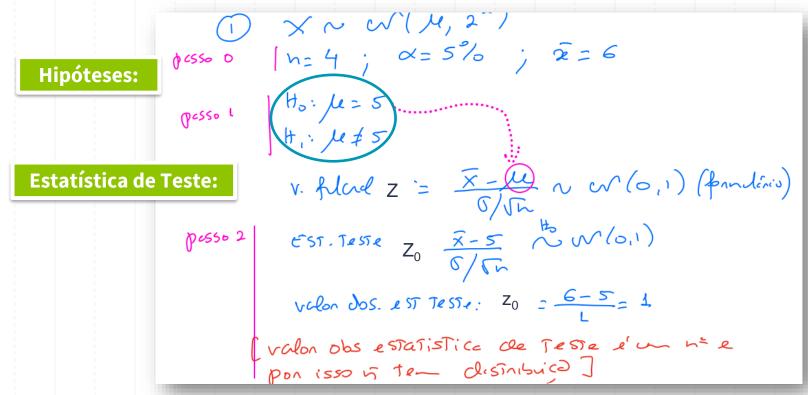
(b) -> Zone de réjeico unlateral, à esquencle

(c) -> Zone de réjeico unlateral, à clinaita

De 99 forme d= cinec de Zone de réjeico

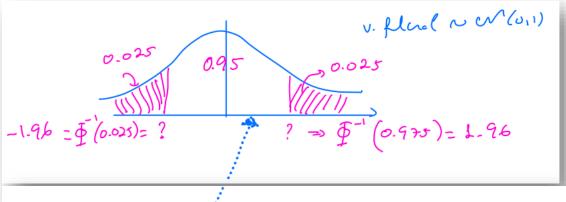
Passoy vention se o volon obsenuelo de estatistica de l'este esté ou à major de réjeico.

Construção de um Teste de Hipóteses: Exemplo 1



Construção de um Teste de Hipóteses: Exemplo 1

Decisão (pela região de rejeição):

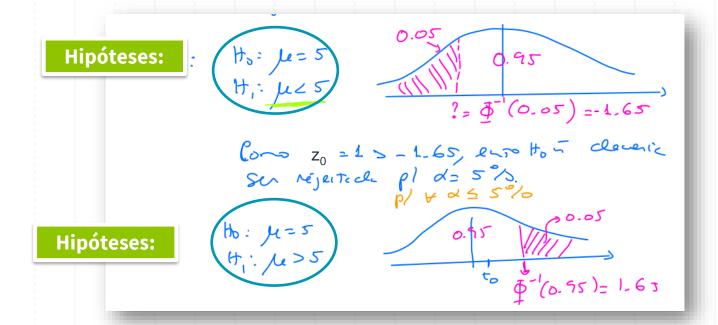


Como [zo | < 1-96, ie, to is perrence à registe ce le réjeica, en pl d=5%, to is cleve ser réjeit de.

Decisão:

Não se rejeita H0 para $\alpha = 5\%$, pois |1| < 1,96. Não existe evidência estatística para afirmar que o valor médio é diferente de 5 para $\alpha = 5\%$.

Construção de um Teste de Hipóteses: Exemplos 2 e 3



Obrigada!

Questões?