

Universidade de Lisboa Instituto Superior de Economia e Gestão

Msc in Economics, Mathematical Finance, Monetary and Financial Economics

$\underline{Mathematical\ Economics}-1st\ Semester\ \textbf{-}\ 2023/2024$

Special Assessi	ment - 05th	of Septe	mber 2024
Duration: ($(120 + \varepsilon)$ n	ninutes, $ \varepsilon $	$ \epsilon \le 30$

Version A

Naı	me:
Stu	ident ID #:
	Part I
	Complete the following sentences in order to obtain true propositions. The items are independent from each other.
• 1	There is no need to justify your answers.
(a) (6	6) The (maximal) domain of $f: D_f \to \mathbb{R}$ defined by
	$f(x,y) = \ln(y^2 - x)$
is	the set
	$D_f = \dots$
ar	nd its representation in the plane (x, y) is

(b) (7) With respect to the set

$$\Omega = \left\{ (x, y) \in \mathbb{R}^2 : x \in [1, 2] \ \land \ 0 < y \le 5^x \right\}$$

we may conclude that $\left(\frac{3}{2},25\right)$ is an point of Ω and

 $\partial\Omega = fr(\Omega) = \dots$

Since Ω is not closed, then Ω is **not**

(c) (6) The graph of $f:]-1,3[\to \mathbb{R}$ is below. We know that

$$\lim_{x \to 1^{-}} f(x) = +\infty, \qquad f(1) = -4$$

 $\lim_{x\to 1^-}f(x)=+\infty, \qquad f(1)=-4$ and $(x_n)_{n\in\mathbb{N}}$ is a sequence in]1,3[such that $\lim_{n\in\mathbb{N}}x_n=1$.

Then

$$\lim_{n \in \mathbb{N}} f(x_n) = \dots$$

(d) (4) With respect to a map $f: \mathbb{R}^2 \to \mathbb{R}$, one knows that

$$\nabla f(x,y) = (6xy, 3x^2 + 1).$$

If f(x,y) does not have constant terms in both components, then

$$f(x,y) = \dots$$

(e) (8) The graphical representation of the correspondence $H:[0,1] \Rightarrow \mathbb{R}$ defined by

$$H(x) = \begin{cases} [\sqrt{x}, 1 - 2x] & x < \frac{1}{4} \\ [0, 2x], & \frac{1}{4} \le x \le \frac{1}{2} \\ \{1\} & x > \frac{1}{2} \end{cases}$$

is:

The set of fixed points of H are explicitly given by:

- (g) (4) With respect to the C^2 map $f: \mathbb{R}^2 \to \mathbb{R}$, we know that $\nabla f(3,2) = (0,0)$ and

$$H_f(3,2) = \begin{pmatrix} 1 & \dots \\ 0 & \dots \end{pmatrix}.$$

Then, we conclude that (3,2) is a **saddle-point** of f.

(h) (4) Consider the following utility **maximisation** problem. There are two goods and an agent with income 3 who wishes to maximize the utility:

$$U(x,y) = \ln(x+1) + y, \quad x \ge 0, \quad y \ge 0$$

subject to a budget constraint $\frac{1}{2}x + y \leq 3$. The necessary conditions to solve the utility maximization problem are:

$$\begin{cases} \dots - \frac{1}{2}\mu_1 + \mu_2 = 0 \\ \dots - \mu_1 + \mu_3 = 0 \end{cases}$$

$$\begin{cases} \mu_1 x = 0, \ \mu_2 y = 0 \\ \dots = 0 \end{cases}$$

$$= 0$$

$$\mu_1, \ \mu_2, \ \mu_3 \dots 0$$

$$\frac{1}{2}x + y \le 3$$

$$x \ge 0, y \ge 0$$

- (i) (4) The map $y(x)=e^{4x},\,x\in\mathbb{R},$ is a solution of the IVP $\left\{\begin{array}{l}y''=.....\\y(.....)=1\end{array}\right.$
- (j) (5) The law (associated to a given population of size p that depends on the time $t \ge 0$) states that

$$p' = kp, \qquad k \in \mathbb{R}.$$

If p(0) = 2 and k = 3, then the **solution** of the previous differential equation is given **explicitly** by

...., where $t \in \mathbb{R}_0^+$

- (l) (6) Consider the following Initial Value Problem (P depends on $t \in \mathbb{R}$):

$$P'' + 3P' + 2P = 0$$
, $P(0) = 0$, $P'(0) = -3$.

Then $\lim_{t\to +\infty} P(t) = \dots$

(m) (7) The linearisation of

(*)
$$\begin{cases} \dot{x} = -3x + xy^2 \\ \dot{y} = 8y - yx^2 \end{cases}$$
 around (0,0) is (**) $\begin{cases} \dot{x} = \dots \\ \dot{y} = \dots \end{cases}$

(n) (4) The phase portrait of $\dot{X} = AX$, where $A \in M_{2\times 2}(\mathbb{R})$ and $X \in \mathbb{R}^2$, is given by:

Then the following **inequality** holds: det(A)..........

(o) (8) Consider the following problem of optimal control where $x:[0,10]\to\mathbb{R}$ is the state and $u:[0,10]\to\mathbb{R}$ is the control:

$$\max_{u(t)\in\mathbb{R}} \int_0^{10} \ln(u(t))dt, \quad x'(t) = x(t) - u(t), \quad x(0) = 1 \quad \text{and} \quad x(10) = 1.$$

Then the Hamiltonian is given by (specify the formulas to the case under consideration):

$$H(t, x, u, p) = \dots$$

$$\begin{cases} \dot{x} = \dots \\ \dot{p} = \dots \end{cases}$$

5

Part II

- Give your answers in exact form. For example, $\frac{\pi}{3}$ is an exact number while 1.047 is a decimal approximation for the same number.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solve a problem, you may get little or no credit for it, even if your answer is correct.

1. Consider the following subsets of \mathbb{R}^2 :

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$
 and $B = \{(x, y) \in \mathbb{R}^2 : |y - 3| \le 1\}.$

- (a) Using the Hyperplane Separation Theorem, show that A and B may be separated by a line in \mathbb{R}^2 .
- (b) Consider the map $f: A \to A$ given by:

$$f(x,y) = \left(\frac{y^2}{2}, \frac{x+y}{2}\right)$$

- (a) Using the Brouwer fixed point Theorem, show that f has a fixed point.
- (b) Compute the fixed point of f.
- 2. Consider the function $f(x,y) = y^2 x^3 + x^2$.
 - (a) Determine and classify all critical points of f. Show that f has no global extrema.
 - (b) Determine the smallest value of f restricted to the set

$$M = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

3. Determine the solution y(x) of the differential equation

$$y'' + 2y' + y = e^{-x},$$

6

satisfying the initial conditions y(0) = 0 e y'(0) = 0.

4. Consider the linear system in \mathbb{R}^2 given by (x and y depend on t):

$$\begin{cases} \dot{x} = 2x \\ \dot{y} = -3y \end{cases}$$

- (a) Write the general form of the solution.
- (b) Sketch the associated phase portrait.
- 5. Consider the following Problem on Calculus of Variations, where $x:[0,1]\to\mathbb{R}$ is a smooth function on t:

$$\min_{x(t)\in\mathbb{R}}\int_0^1[2tx(t)+\dot{x}^2(t)]dt,\quad \text{with}\quad x(0)=0\quad \text{and}\quad x(1)\in\mathbb{R}.$$

- (a) Write the corresponding Euler-Lagrange equation applied to the case under consideration.
- (b) Find the solution of the problem.

Credits:

I	II.1(a)	II.1(b)	II.2(a)	II.2(b)	II.3	II.4(a)	II.4(b)	II.5(a)	II.5(b)
80	10	15	15	15	20	10	10	10	15