
Lecture 8: Brownian Motion

Bernardino Adao

ISEG, Lisbon School of Economics and Management

April 4, 2025

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 8 April 4, 2025 1 / 46



Continuous time

As we assume continuous trading: need to consider continuous time,
instead of discrete time

Diffusion models are a standard way to represent random variables
in continuous time

The ideas are analogous to discrete-time stochastic processes

The basic building block of a diffusion model is a Brownian motion
(or Wiener process), which is a real-valued continuous-time
stochastic process
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Brownian motion

Brownian motion is the random movement of microscopic particles
suspended in a fluid, caused by constant collisions with the fluid
molecules.

It is a classic example of a continuous random walk.

Robert Brown (1827): A Scottish botanist first observed this
phenomenon while studying pollen grains in water under a
microscope. He noted their erratic movement but could not explain
why it happened

Albert Einstein (1905): Provided a theoretical explanation, proving
that Brownian motion was due to the random collisions of molecules
in a fluid

Norbert Wiener (1923): Developed the mathematical theory of
continuous random walks, leading to the Wiener process, a key part
of modern stochastic processes
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Applications

Physics and Chemistry:

Modeling Particle Motion: Brownian motion provides a model for
understanding the random motion of small particles suspended in a
fluid, like pollen grains in water or dust particles in air
Diffusion: It’s crucial for understanding diffusion processes, where
particles move from areas of high concentration to low concentration
Micromanipulation of DNA: Brownian motion is used in techniques to
manipulate DNA molecules

Finance:

Stock Market Modeling: Geometric Brownian motion, a variation of
Brownian motion, is used to model the fluctuations of stock prices and
other financial assets
Options Pricing: The assumption that asset prices follow Brownian
motion is essential to options pricing models

Biology and Medicine: Movement of bacteria, cellular transport

Computer Science: Randomized algorithms, Monte Carlo methods

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 8 April 4, 2025 4 / 46



Brownian motion

A Brownian motion is the natural generalization of a random walk
in discrete time
Can think of a random walk as modelling a person’s erratic path
when intoxicated in discrete time:

zt − zt−1 = εt

εt ∼ N(0, 1), E (εt εs ) = 0, s 6= t
A Brownian motion zt :

zt+∆ − zt ∼ N(0,∆)

i.e. mean zero and variance ∆

As E (εt εs ) = 0 in discrete time, increments to z for nonoverlapping
intervals are also independent

cov(zt+∆ − zt , zs+∆ − zs ) = 0
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Example Brownian motion
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Brownian motion

dzt ≡ zt+dt − zt ∼ N(0, dt)

That is, the change in zt over a small time interval dt, follows a
normal distribution with:

Mean: 0
Variance: dt
Independent increments: The increments dzt over non-overlapping
time intervals are independent.
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Brownian motion

The variance of a random walk scales with time

var (zt+k − zt ) = var (εt+1 + ...+ εt+k ) = kvar (zt+1 − zt )

And the variance of a Brownian motion scales with time too

var(zt+k∆ − zt ) = kvar(zt+∆ − zt )

The standard deviation is the “typical size”of a movement in a
normally distributed random variable

The “typical size”of zt+∆ − zt in time interval ∆ is 2
√

∆

This means that
zt+∆ − zt

∆
has “typical size”1/ 2

√
∆

Thus, the sample path of zt is continuous but is not differentiable:
moves infinitely fast (up and down)
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Brownian motion

Definition: Differential dzt is the forward difference

dzt = lim
∆↘0

(zt+∆ − zt )

Can be represented as an integral

zt = z0 +
∫ t

0
dzt

Define dt as the smallest positive real number such that dtα = 0 if
α > 1

Properties of dz :

Et (dzt ) = 0

Et (dztdt) = dtEt (dzt ) = 0, dt is a constant
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Brownian motion

Properties of dz :

dt = var (dzt ) = Et [zt+∆ − zt − Et (zt+∆ − zt )]2

= Et (zt+∆ − zt )2 − Et [Et (zt+∆ − zt )]2

= Et (zt+∆ − zt )2 ≡ Et
(
dz2t
)

i.e. the expected value of the squared random variable is the same as
the variance.

Observation: notation dz2t ≡ (dzt )
2
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Brownian motion

Additional properties of dz :

var(dz2t ) = E
(
dz4t
)
− E 2

(
dz2t
)
= 3dt2 − dt2 = 0

fourth central moment of a normal is 3σ2 and dt2 is 0

Et (dztdt)
2 = dt2Et

(
dz2t
)
= 0

var (dztdt) = Et (dztdt)
2 − E 2 (dztdt) = 0

dz2t = dt, because the variance of dz
2
t is zero and Et

(
dz2t
)
= dt

dztdt = 0, because the variance of dztdt is zero and Et (dztdt) = 0
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Stochastic differential equation (diffusion)

Can construct more complicated time-series processes by adding drift,
µ (·) , and volatility, σ (·) , terms to dzt ,

dxt = µ (t, xt ) dt + σ (t, xt ) dzt

as a short-cut to express

xt = x0 +
∫ t

0
µ (t, xs ) ds +

∫ t

0
σ (t, xs ) dzs

Some examples:
Random walk with drift

dxt = µdt + σdzt , continuous time

xt+1 − xt = µ+ σεt+1, discrete time

Geometric Brownian motion with drift

dxt = xtµdt + xtσdzt
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Diffusion model

From the standard Brownian motion case, we already know that
dzt ∼ N(0, dt). Since multiplying a normal variable by σ scales its
mean and variance, we get

σdzt ∼ N(0, σ2dt)

Adding the drift term µdt gives:

µdt + σdzt = dxt ∼ N(µdt, σ2dt)

Any stochastic process (without jumps) can be approximated by a
diffusion.
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Geometric Brownian motion

Can simulate a diffusion process by approximating it with a small time
interval,
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Price of stock

Let Pt be the price of a generic stock at any moment in time that
pays dividends at the rate Dtdt

The instantaneous return is

dPt
Pt

+
Dt
Pt
dt

Let the price be a geometric Brownian motion

dPt
Pt

= µpdt + σpdzt

The risk-free rate can be thought as the return on an asset that does not
pay dividend and has the price

dPt
Pt

= r ft dt
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Ito’s Lemma

Suppose we have a diffusion representation for one variable, say

dxt = µ (·) dt + σ (·) dzt

Define a new variable in terms of the old one,

yt = f (xt )

What is the diffusion representation for yt . Ito’s lemma tells you
how to get it

Use a second-order Taylor expansion, keep terms dz , dt , and
dz2 = dt , but terms dt × dz , dt2, and higher go to zero
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Ito’s Lemma

Start with the second order Taylor expansion

dy =
df
dx
dx +

1
2
d2f
dx2

dx2

Expanding the second term

dx2 = [µdt + σdzt ]
2 = µ2dt2 + σ2dz2t + 2µσdztdt = σ2dt

Substituting for dx2 and dx

dy =
df
dx
[µdt + σdzt ] +

1
2
d2f
dx2

σ2dt

=

(
df
dx

µ+
1
2
d2f
dx2

σ2
)
dt +

df
dx

σdzt
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Pricing

The utility function in continuous time is

E0
∫ ∞

0
e−δtu (ct ) dt

Let Pt be the price of an asset that pays dividends Dt
The price must satisfy

Pte−δtu′ (ct ) = Et
∫ ∞

s=0
Dt+se−δ(t+s)u′ (ct+s ) ds

In discrete time we have:

Pt = Et
∞

∑
s=0

Dt+s

[
βsu′ (ct+s )
u′ (ct )

]
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Pricing

Define Λt ≡ e−δtu′ (ct ) as the discount factor in continuous time. It
follows that

PtΛt = Et
∫ ∆

s=0
Dt+sΛt+sds + Et

∫ ∞

s=∆
Dt+sΛt+sds

or

PtΛt = Et
∫ ∆

s=0
Dt+sΛt+sds + Et [Pt+∆Λt+∆]

For small ∆ the integral above can be approximated by DtΛt∆

PtΛt ≈ DtΛt∆+ Et [Pt+∆Λt+∆]

or
0 ≈ DtΛt∆+ Et [Pt+∆Λt+∆ −ΛtPt ]

For ∆ −→ dt
0 = DtΛtdt + Et [d (ΛtPt )]
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Pricing

Define the function
f (ΛtPt ) = ΛtPt

where
dΛt = µΛdt + σΛdzt and dPt = µPdt + σPdzt

Taylor expansion of d (ΛtPt )

d (ΛtPt ) =
∂f

∂Λt
dΛt +

∂f
∂Pt

dPt +
1
2

∂2f
∂Λ2

t
(dΛt )

2 +
1
2

∂2f
∂P2t

(dPt )
2 +

1
2

∂2f
∂Pt∂Λt

dPtdΛt +
1
2

∂2f
∂Λt∂Pt

dΛtdPt

+higher order terms

Since higher order terms = 0, and replacing the derivatives
∂2f
∂Λ2

t
= ∂2f

∂P 2t
= 0

d (ΛtPt ) = ΛtdPt + PtdΛt + dΛtdPt

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 8 April 4, 2025 20 / 46



Pricing

Replacing dΛtPt in the pricing equation

0 = DtΛtdt + Et [d (ΛtPt )]

and dividing by ΛtPt get

0 =
Dt
Pt
dt + Et

[
dPt
Pt

+
dΛt

Λt
+
dΛt

Λt

dPt
Pt

]
or

Dt
Pt
dt + Et

[
dPt
Pt

]
= −Et

[
dΛt

Λt
+
dΛt

Λt

dPt
Pt

]
For the risk free rate:

Dt = 0,
dPt
Pt

= r ft dt

implying
dΛt

Λt

dPt
Pt

= 0, and r ft dt = −Et
[
dΛt

Λt

]
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Pricing

Replacing

r ft dt = −Et
[
dΛt

Λt

]
in

Dt
Pt
dt + Et

[
dPt
Pt

]
= −Et

[
dΛt

Λt
+
dΛt

Λt

dPt
Pt

]
get:

Dt
Pt
dt + Et

[
dPt
Pt

]
= r ft dt − Et

[
dΛt

Λt

dPt
Pt

]
which is the equivalent in discrete time to

EtRt+1 = R ft+1 − R ft+1covt (mt+1,Rt+1)
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Black-Scholes formula

The Black—Scholes formula provides the price of an option
We are going to use the discount factor approach to derive the
formula
The risk free bond price follows the process:

dBt
Bt

= rdt

where r is the riskless rate
The stochastic discount factor follows the process:

dΛt

Λt
= −rdt − µ− r

σ
dzt

where µ−r
σ is the Sharpe ratio

Recall that dΛt
Λt

is a discount factor if it can price the bond and the
stock
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Black-Scholes formula

Let St be the price of a stock that pays no dividends (alternatively
can think that the dividend is already included in the drift: µS )

We established that dΛt
Λt

must satisfy the condition

Et

[
dSt
St

]
= −Et

[
dΛt

Λt
+
dΛt

Λt

dSt
St

]
Thus, for d (Λt )

Λt
to be a stochastic discount factor must satisfy

−rdt = Et
[
dΛt

Λt

]

Et

[
dSt
St

]
− rdt = −Et

[
d (Λt )

Λt

dSt
St

]
Exercise: Check that these 2 conditions are satisfied. Remember
Et (dzt ) = 0, dz2t = dt, dztdt = 0 and dt

α = 0, if α > 1
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Black-Scholes formula

To find the value of

C0Λ0 = E0ΛT max(ST − X , 0)

=
∫ ∞

0
ΛT max(ST − X , 0)df (ΛT ,ST )

we need to find the values ΛT and ST
we need the solution of the stochastic differential equation for Λt and
St :

A little Math

d ln St =
1
St
dSt −

1
2
1
S2t
dS2t

=

(
µ− 1

2
σ2
)
dt + σdzt
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Black-Scholes formula

Integrating

d ln St =
(

µ− 1
2

σ2
)
dt + σdzt

from 0 to T gives∫ T

0
d ln St =

(
µ− 1

2
σ2
) ∫ T

0
dt + σ

∫ T

0
dzt

ln ST = ln S0 +
(

µ− 1
2

σ2
)
T + σ (zT − z0)

where zT − z0 is a normally distributed random variable with mean
zero and variance T .
Thus, ln ST is conditionally (on the information at date 0) normal
with mean ln S0 +

(
µ− 1

2σ2
)
T and variance σ2T .
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Black-Scholes formula

The solutions can be written as

ln ST = ln S0 +
(

µ− 1
2

σ2
)
T + σ

2
√
T ε

lnΛT = lnΛ0 −
(
r +

1
2

(
µ− r

σ

)2)
T − µ− r

σ
2
√
T ε

where
ε =

zT − z0
2
√
T
∼ N (0, 1)

Recall
dΛt

Λt
= −rdt − µ− r

σ
dzt

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 8 April 4, 2025 27 / 46



Black-Scholes formula

Now we can do the integral:

C0 =
∫ ∞

0

ΛT

Λ0
max(ST − X , 0)df (ΛT , ST )

=
∫ ∞

ST=X

ΛT

Λ0
(ST − X )df (ΛT , ST )

=
∫ ∞

ST=X

ΛT (ε)

Λ0
(ST (ε)− X )f (ε)dε

where f is the density of ε

We know the joint distribution of the terminal stock price ST and
discount factor ΛT on the right hand side, so we have all the
information we need to calculate this integral.
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Black-Scholes formula

Start by breaking up the integral into two terms

C0 =
∫ ∞

ST=X

ΛT (ε)

Λ0
ST (ε) f (ε)dε− X

∫ ∞

ST=X

ΛT (ε)

Λ0
f (ε)dε

use
ST
S0
= e(µ− 1

2 σ2)T+σ
√
T ε

ΛT

Λ0
= e

−
(
r+ 1

2 (
µ−r

σ )
2)
T− µ−r

σ

√
T ε

C0 = S0
∫ ∞

X
e
−
(
r+ 1

2 (
µ−r

σ )
2)
T− µ−r

σ

√
T ε
e(µ− 1

2 σ2)T+σ
√
T εf (ε)dε

−X
∫ ∞

X
e
−
(
r+ 1

2 (
µ−r

σ )
2)
T− µ−r

σ

√
T ε
f (ε)dε
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Black-Scholes formula

or

C0 = S0
∫ ∞

X
e
(

µ−r− 1
2

(
σ2+( µ−r

σ )
2))

T+(σ− µ−r
σ )
√
T ε
f (ε)dε

−X
∫ ∞

X
e
−
(
r+ 1

2 (
µ−r

σ )
2)
T− µ−r

σ

√
T ε
f (ε)dε

Now we replace the formula for f (ε)

f (ε) =
1√
2π
e−

1
2 ε2

C0 =
S0√
2π

∫ ∞

X
e
[
µ−r− 1

2

(
σ2+( µ−r

σ )
2)]

T+(σ− µ−r
σ )
√
T ε− 1

2 ε2
dε

− X√
2π

∫ ∞

X
e
−
(
r+ 1

2 (
µ−r

σ )
2)
T− µ−r

σ

√
T ε− 1

2 ε2
dε

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 8 April 4, 2025 30 / 46



Black-Scholes formula

or

C0 =
S0√
2π

∫ ∞

X
e−

1
2 (ε−(σ− µ−r

σ )
√
T )

2

dε

− X√
2π
e−rT

∫ ∞

X
e−

1
2 (ε+ µ−r

σ

√
T )

2

dε

Notice that the integrals have the form of a normal distribution with
nonzero mean and variance 1.

Recall: x ∼ N
(

µ̃, σ̃2
)
if

f (x) =
1√
2πσ̃

e−
1
2
(x−µ̃)2

σ̃2
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Black-Scholes formula

The lower bound X can be expressed in terms of ε

lnX = ln ST = ln S0 +
(

µ− 1
2

σ2
)
T + σ

√
T ε

implies

ε =
lnX − ln S0 −

(
µ− 1

2σ2
)
T

σ
√
T

The integrals can be expressed using the cumulative standard normal,
Φ

Φ (a− µ) =
1√
2π

∫ a

−∞
e−

(x−µ)2

2 dx

where Φ (·) is the area under the left tail of the standard normal
distribution.
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Black-Scholes formula

because Φ is symmetric around zero

Φ (a− µ) = 1−Φ (µ− a)

Φ (µ− a) = 1√
2π

∫ ∞

a
e−

(x−µ)2

2 dx
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Black-Scholes formula

Substituting in

C0 =
S0√
2π

∫ ∞

X
e−

1
2 (ε−(σ− µ−r

σ )
√
T )

2

dε

− X√
2π
e−rT

∫ ∞

X
e−

1
2 (ε+ µ−r

σ

√
T )

2

dε

C0 = S0Φ

(
−
lnX − ln S0 −

(
µ− 1

2σ2
)
T

σ
√
T

+

(
σ− µ− r

σ

)√
T

)

−Xe−rTΦ

(
−
lnX − ln S0 −

(
µ− 1

2σ2
)
T

σ
√
T

− µ− r
σ

√
T

)
Simplifying, we get the Black-Scholes formula

C0 = S0Φ

(
ln S0X +

(
r + 1

2σ2
)
T

σ
√
T

)
−Xe−rTΦ

(
ln S0X +

(
r − 1

2σ2
)
T

σ
√
T

)
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Black-Scholes formula

We repeat the formula again here:

C0 = S0Φ

(
ln S0X +

(
r + 1

2σ2
)
T

σ
√
T

)
−Xe−rTΦ

(
ln S0X +

(
r − 1

2σ2
)
T

σ
√
T

)

The price is a function:

S0 (stock price)
r (risk free rate)
X (strike price)
T (time to expiration date)
σ (volatility of the underlying stock)
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Black-Scholes formula

C0 = S0Φ

(
ln S0X +

(
r + 1

2σ2
)
T

σ
√
T

)
− Xe−rTΦ

(
ln S0X +

(
r − 1

2σ2
)
T

σ
√
T

)
This formula is useful to assess how the price of the option changes
when the variables in the r.h.s. of the equation change
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Black-Scholes formula

The price is a monotonic increasing function of the σ

This formula is often used to solve for σ (once C0 is known). The σ is
the implied volatility
Typically options are quoted in units of sigma
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Black-Scholes formula

Exercise:
Determine the price of an European call option with S0 = 50 euros,
r = 4%, X = 48 euros, T = 60 days and σ = 30%. What is the price of
an European put option on the same stock, with the same exercise price
and time to maturity?

ln S0X +
(
r + 1

2σ2
)
T

σ
√
T

=
ln 5048 +

(
0.04+ 1

2 (0.3)
2
)
60
365

0.3
√

60
365

= 0.450 49

ln S0X +
(
r − 1

2σ2
)
T

σ
√
T

=
ln 5048 +

(
0.04− 1

2 (0.3)
2
)
60
365

0.3
√

60
365

= 0.328 86

Φ (0.450 49) = 0.67382
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Black-Scholes formula

In Excel the command to get the cumulative normal is
"=NORM.S.DIST(0,45049;TRUE)"

Φ (0.328 86) = 0.62886

C0 = 50 (0.67382)− 48e−0.04
60
365 (0.62886) = 3.7035

To compute the put price must use the put-call parity formula

C0 − P0 = S0 −
X
R f

P0 = C0 +
X
R f
− S0

P0 = 3.7035+ 48e−0.04
60
365 − 50 = 1.3889
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Spanning

Given contingent prices can get discount factors, contingent claims
and risk neutral probabilities

Proposition: The second derivative of the call option price with respect to
the exercise price gives a stochastic discount factor.
Proof: We can construct a contingent claim. Consider the strategy of
buying 2 call options, one with strike price X − ε and another with strike
price X + ε, and selling 2 call options with strike price X . The payoff of
that portfolio (known as butterfly) is
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Spanning
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Spanning

As ε↘ 0 we are creating a contingent claim.
The payoff of the contingent claim is the area of the triangle ε2.
The cost of this portfolio is

C (X − ε)− 2C (X ) + C (X + ε)

But this is ε2 ∂2C
∂X 2 . Recall that f

′′ (x) = limε−→0
f ′(x+ε)−f ′(x )

ε and

f ′ (x) = limε−→0
f (x )−f (x−ε)

ε . Thus, f ′′ (x) = limε−→0
f (x+ε)−f (x )

ε − f (x )−f (x−ε)
ε

ε .
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Spanning

Thus, if we buy 1
ε2
of the butterfly we get a payoff of 1 if the ST = X and

a payoff zero for any other value of ST .
Conclusion: The price of this contingent claim is ∂2C

∂X 2 .

Once we have contingent claims we can price any payoff that is a
function of ST , x (ST )

The price of a portfolio with payments x (ST ) is

P =
∫
ST

∂2C
∂X 2

(X = ST ) x (ST ) dST
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Spanning

Discount factor mST=
∂2C
∂X 2

(X=ST )

f (ST )
, where f (ST ) is the probability of

ST
Risk neutral probabilities pST = (1+ r)

T ∂2C
∂X 2 (X = ST )

P =
E p (x (ST ))

(1+ r)T

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 8 April 4, 2025 44 / 46



Data

Are actual prices equal to the ones predicted by the Black-Scholes
formula?

When options with the same maturity T , same S , but different X , are
graphed for implied volatility the tendency is for that graph to show a
smile.
The smile shows that the options that are furthest in or
out-of-the-money have the highest implied volatility.

Options with the lowest implied volatility have strike prices at or
near-the-money.

But the Black-Scholes model predicts that the implied volatility curve
is flat when plotted against varying strike prices!
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Data

This means that calls near-the-money have a lower price than the
others
Solution: Consider that the underlying asset price follows a
distribution with fatter tails, or that the volatility is a stochastic
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