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Part I

e Complete the following sentences in order to obtain true propositions. The items
are independent from each other.

e There is no need to justify your answers.

(a) (4) The (maximal) domain of f : Dy — R defined by

w? 4 (y—1)°
In 2.2 '

flz,y) =

is the set

(simplify the expression)

(b) (7) With respect to the set
Q={(z,y) eR*:ze[L,2[A0<y<e "}

we may conclude that the point (......,......) € 9Q\Q and



(¢) (5) The graph of f : ] —1,3[— R is below. We know that

lim f(z) = o0, f(1)=—4

r—1—

and (z,)nen is a sequence in |1, 3[ such that lir% x, = 1.
ne

yli

H\I‘

Then

(d) (5) With respect to a map f : R? — R, one knows that V f(x,y) = (4x3y?; 2z1y). If
f(z,y) does not have constant terms, then

() (4) The map f: R — R is continuous, f(—2) =4 and f(1) = 8. The Intermediate
Value Theorem ensures that the equation f(x) = ....... has at least one solution in
| — 2, 1[. Moreover, if fiS ..ccccooviriiinnnnn then the solution is unique.



(f) (8) The graphical representation of the correspondence H: [0,2] = [0, 2] defined by

H(z) = {iﬁ’kg] iii

1s:

The set of fixed points of H is explicitly given by: ........ccccooeinnnnn.

(g) (5) With respect to the map given by f(x,y) = 2z — y — 2% — 3%, one knows that

Vf(1l,—1/2) = (0,0). Since

then f is stricly concave in R? and thus f(1,—1/2) iS & .cccovvrrirrennnn

of f.

(h) (4) Consider the following maximisation problem
maximize x* —y, subject to 2% +y* < 1.

The Karush-Kuhn-Tucker conditions are:

(20 — 2 =0
........................ =0
A1 —2? —y?) = ...

| 222 <1

maximum



(1) (8) The wccocvovviiiiine, law (associated to a given population of size p that depends
on the time t > 0) states that

p = ap — bp?, a>beR".

The phase portrait of the differential equation is:

If o(t) is the solution of the differential equation such that ¢(0) = %, then

lm p(t) = ..

t—+00

(j) (4) Assuming that y depends on = € R, any solution of the differential equation
1
/
y =

o) is monotonically.......................
)

(k) (8) Assuming that y depends on z, the graph of the solution of the IVP

y'+4y =0
y'(0)=0
y(0) =4

18

(1) (8) Assuming that z and y depend on ¢, the linearisation of

2024

T =2x—axy . T = eiirinnnn.
* ) around (0,0) is ok .
wf ST womd0.0) 5 (o]

With respect to the Lyapunov’s stability, we may conclude that (0,0) i8S ........cceevvrenne.
Furthermore, ....................... e Theorem says that, there exists a small
neighbourhood of (0,0) where the dynamics of (*) and (**) are “qualitatively” the
same (topologically conjugated).



(m) (5) The phase portrait of X = AX, where A € My »(R) and X = (z,y) € R?, is
given by:

Hence the following inequality is valid: det(A)............

(n) (10) Consider the following problem of optimal control where z : [0,10] — R is the
state, u : [0,10] — R is the control and t is the independent variable:

10
min/ ......................... dt, 2'(t)=wu(t), z(0)=1 and x(10) free.
0

u(t)ER

We may turn the previous problem into the following maximization problem:

10 2 2
J(r%)aeﬁ/o _:v(;f) _u(;f) dt, 2'(t)=u(t), z(0)=1 and x(10) free.

Then the Hamiltonian is given by (specify the formulas to the case under considera-

tion):
H (U, P) = ettt
The Pontryagin maximum principle says that the optimal control u* should satisfy
the equality ......ccoooiiiis . The Hamiltonian differential equations are
given by:
T = i
D= i,



Part 11

e Give your answers in exact form. For example, % is an exact number while 1.047 is
a decimal approximation for the same number.

e In order to receive credit, you must show all of your work. If you do not indicate
the way in which you solve a problem, you may get little or no credit for it, even if
your answer is correct.

1. Consider the map f : [1, +00[— R defined by
T
flx) = Vo + 1

(a) Show that f satisfies the hypotheses of the Banach fixed point Theorem.
(b) Find the fixed point of f and compute lirf f"(2024).
n—-+0o0

(Remark: f™ = fo fo..o f denotes the composition map).

2. Consider the map f defined in D = {(z,y) € R? : y > 0} as
f(w,y) =y —2"Iny

(a) Find, if they exist, the local extrema of f.

(b) The map f has a global minimum when restricted to M = {(z,y) € D : 2y = 1}.
Find it.

3. Consider the following IVP (y is a function of z):

{ xy +y = xe®
y(1) =1

Write the solution y(x) of the IVP, identifying its maximal domain.

4. Consider the linear system of ODEs in R? given by (z and y depend on t):

T=x+Yy
y=-9r+vy

(a) Write the general form of the solution.

(b) Sketch, in the phase portrait, the unique solution such that (0) = 0,y(0) = 3.



5. Consider the following Problem on Calculus of Variations, where x : [0,1] — R is a
smooth function on ¢:

max /1[1 —z(t)? — 2(t)%dt, with 2(0)=1 and z(1)€R.

z(t)ER

(a) Write the Euler-Lagrange equation and the transversality condition applied to
the case under consideration.

(b) Find the solution of the problem.
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