ALM - Basic Interest Rate Theory

Tiago Fardilha and Walther Neuhaus

Course Program

- Basic interest rate theory
- Interest rate risk management
- Stochastic term structure models
- Risk measurement
- Reinsurance and insurance-linked securities
- Mean-variance analysis for ALM

Contents of the chapter

- A continuous model for yield curves.
- Estimating the yield curve.
- Sensitivity of present values.

Definition of yield

• If P(t) is the market price of a "zero-coupon bond" that pays the risk-free amount of ${\it \in }1$ at time t, its yield y is defined by the equation: $P(t)=e^{-yt}$

• The yield of the zero-coupon bond is defined as:

$$y(t) = -rac{1}{t}ln\left(P(t)
ight)$$

The chicken and the egg

Note

The yield is just a way of expressing the price.

• y(t) is also called the **spot** rate or zero rate for maturity t.

Yield curve example

Country:

Portugal

Discounting

- Assume that the yield curve $\{y(t): t>0\}$ is known.
- The arbitrage-free market value of a risk-free, future cashflow $\{c\left(t_{1}\right),c\left(t_{2}\right),\ldots,c\left(t_{n}\right)\}$ is:

$$B = \sum_{i=1}^{n} P\left(t_i
ight) c\left(t_i
ight) = \sum_{i=1}^{n} e^{-y(t_i)t_i} c\left(t_i
ight)$$

• Every payment is valued separately as a zero-coupon bond.

Yields are strange

Consider this:

- The spot rate y(t) at maturity t is the **constant** yield rate in the interval (0, t) that reproduces the observed price P(t) of $\in 1$ payable at time t.
- At the same time we are aware that the yield curve is **not constant**!

Forward rates

- The forward rate $y_F(t)$ is the implied yield in the infinitesimal time interval (t, t+dt), defined consistently with the spot rate.
- The spot rate is the average of forward rates in the interval (0, t).

Forward rates

ullet Forward rates $y_F(t)$ are defined by spot rates through the equation

$$\int_0^t y_F(s) ds = y(t) \cdot t.$$

• Assuming differentiability, we have

$$y_F(t) = y(t) + t \cdot y'(t).$$

Annual compounding

- Let *n* be an integer.
- Let P(n) be the market price of a zero coupon bond that pays the risk free amount of $\in 1$ at time n.
- Then the yield i with annual compounding is defined by $P(n) = (1+i)^{-n}$.
- The yield of zero coupon bonds can be explicitly calculated:

$$i=i(n)=P(n)^{-rac{1}{n}}-1=e^{y(n)}-1$$

Annual compounding

Note

Recall the relationship between yield with annual compounding (i) and yield with continuous compounding (y):

$$i = e^y - 1$$

$$i=e^y-1 \ y=ln(1+i)$$

Why continuous compounding?

• Continuous compounding allows a unified and simple notation, e.g.

$$P(t) = exp(-y(t) \cdot t) = exp\left(\int_0^t y_F(s)ds
ight)$$

regardless of wether t is an integer (whole year) or not.

- In this lecture we will use continuous compounding.
- In the financial press, annual and semi-annual compounding is common.

Bonds

- A bond can be defined in general as "a promise to make a series of payments of specified size, at specified times in the future".
- Let us denote by $c(t_i)$ the payment due at time t_i , for $i=1,\ldots,n$.
- We assume that bonds have no credit risk.

Bond yield

- Let $\{c(t_i): i=1,\ldots,n\}$ be the payments stipulated by a bond.
- Let B be the price being paid for the bond in the market.
- The average yield \bar{y} of the bond is defined (implicitly) by

$$B=B(ar{y})\stackrel{!}{=}\sum_{i=1}^n e^{-ar{y}t_i c(t_i)}\stackrel{def}{=}\int_0^\infty e^{-ar{y}t}dC(t)$$

• The average bond yield is well-defined if all payments are non-negative.

Bond yield example

We are at the 31st December 2023. We will compute the yield of a bond.

• Face value: 100

• Annual coupons: 5%

• Maturity: 5 years

Market assumptions for Portugal by EIOPA

Coupon (%) 5 5 Face Value 100 5

• Bond price: 109.3545473

Yield curve estimation

Estimating the market yield curve by replication

- Assume that you know the market prices B_1, \ldots, B_n of n different government bonds.
- Define the payoff matrix

$$\mathbf{C} = egin{pmatrix} c_{11} & \dots & c_{1n} \ dots & \ddots & dots \ c_{n1} & \dots & c_{nn} \end{pmatrix} = egin{pmatrix} Payments \ of \ bond \ 1 \ dots \ Payments \ of \ bond \ n \end{pmatrix}$$

• Some of the c_{ij} may be zero but all bonds' total payments must be restricted to the time points t_1, \ldots, t_n .

Yield curve estimation - replication

• We construct a portfolio (w_1, \ldots, w_n) that replicates the cash flow of a zero-coupon bond at maturity t_i :

$$(w_1,\ldots,w_n)\mathbf{C}\stackrel{!}{=}(0,\ldots,0,1,0,\ldots,0)$$

• The equation is solved by

$$(w_1,\ldots,w_n)=(0,\ldots,0,1,0,\ldots,0){f C}^{-1}=row_j{f C}^{-1}$$

ullet Then, the price of the zero-coupon bond at maturity t_i is

$$P(t_j) = \sum_{i=1}^n w_i B_i$$

Yield curve estimation - replication

- ullet The ullet The ullet The ullet The ullet ullet ullet ullet The ullet ullet
- In theory, finding yield curves is easy matrix algebra. In practice there are a number of problems. For example:
 - Not enough traded bonds to cover all time points.
 - Payments at other time points.
 - Lack of long term bonds.
- In practice you would use a software or the risk-free rates delivered by EIOPA, Bloomberg or others.

Example - Market assumption 31/12/2023

# /	A tibbl	e: 15	× 5			
	Bond	`Mat.	31/12`	`Face value`	`Face val.`	`Avg. yield`
	<dbl></dbl>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1		2024	100	0.04	0.0219
2	2		2025	100	0.04	0.0247
3	3		2026	100	0.04	0.0255
4	4		2027	100	0.05	0.0267
5	5		2028	100	0.05	0.0281
6	6		2029	100	0.05	0.0293
7	7		2030	100	0.05	0.0305
8	8		2031	100	0.05	0.0315
9	9		2032	100	0.05	0.0324
10	10		2033	100	0.05	0.0329
11	11		2034	100	0.05	0.0332
12	12		2035	100	0.05	0.0335
13	13		2036	100	0.05	0.0338

Example - Payment Matrix

	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
2036 2037												
[1,]	104	0	0	0	0	0	0	0	0	0	0	0
0 0												
[2,]	4	104	0	0	0	0	0	0	0	0	0	0
0 0)											
[3,]	4	4	104	0	0	0	0	0	0	0	0	0
0 0)											
[4,]	5	5	5	105	0	0	0	0	0	0	0	0
0 0)											
[5,]	5	5	5	5	105	0	0	0	0	0	0	0
0 0												
[6,]	5	5	5	5	5	105	0	0	0	0	0	0
0 0												
[7,]	5	5	5	5	5	5	105	0	0	0	0	0
0 0)											

Example - Clean market price B

```
# A tibble: 15 \times 6
   Bond `Maturity 31.12. ...` `Face value` Coupon `Average
yield_annual`
 <dbl>
                     <dbl>
                                <dbl> <dbl>
<dbl>
1 1
                      2024
                                  100
                                       0.04
0.0219
2 2
                      2025
                                  100
                                        0.04
0.0247
3 3
                      2026
                                        0.04
                                  100
0.0255
                                        0.05
4 4
                      2027
                                  100
0.0267
5 5
                                        0.05
                      2028
                                  100
0.0281
                      2029
                                        0.05
6
      6
                                  100
```

Example - market yield curve

```
time price of €1 spot rate
1
     1
        0.9785475
                    2.169%
     2 0.9522118 2.448%
     3 0.9269405 2.529%
4
     4 0.8994891
                  2.648%
5
     5 0.8693488
                    2.800%
6
     6 0.8390086
                  2.926%
                  3.055%
     7 0.8074717
8
     8 0.7765943
                    3.160%
9
     9 0.7453737
                    3.265%
10
    10 0.7180624
                    3.312%
11
    11
                  3.344%
        0.6922223
12
    12
        0.6669583
                    3.375%
13
    13 0.6423107
                  3.405%
14
    14 0.6183099
                    3.434%
15
    15
        0.5949776
                    3.462%
```

Yield curve estimation - bootstrapping

- Assume you have bonds $i=1,\ldots,n$.
- ullet Bond nr. i matures at time t_i , pays coupon c_i and its current market price is B_i .
- All bonds have principal 1.
- 1. Solve for the first bond

$$B_1 = (1+c_1)\,P(t_1) \Rightarrow P(t_1) = rac{B_1}{1+c_1} = e^{-y(t_1)t_1}$$

Yield curve estimation - bootstrapping

2. Solve for each subsequent bond

$$egin{array}{lll} B_m & = & c_m \underbrace{\sum_{i=1}^{m-1} P(t_i)}_{\mathbf{known}} + (1+c_m) \underbrace{P(t_m)}_{\mathbf{unknown}} \ & & \Rightarrow & P(t_m) = rac{B_m - c_m \sum_{i=1}^{m-1} P(t_i)}{1 + c_m} = e^{-y(t_m)t_m} \end{array}$$

Present value sensitivity

- Let's assume we have
 - a future cash flow $\{C(t): t>0\}$;
 - the current yield curve $\{y(t): t>0\}$.
- The present value of the cash flow is

$$B(y) = \int_0^\infty e^{-y(t)t} dC(t)$$

- How will the **PV** of *B* change if the yield curve changes?
- The easy answer: Calculate it!
- The traditional answer: Estimate it!

Duration and convexity 1

• The derivative of the PV with respect to a uniform shift in the entire yield curve is

$$B'(y) = \lim_{\Delta ar{y} o 0} rac{1}{\Delta ar{y}} igg(\int_0^\infty e^{-(y(t) + \Delta ar{y})t} dC(t) - \int_0^\infty e^{-y(t)t} dC(t) igg)$$

The first and second derivative of the PV are

$$B'(y) = -\int_0^\infty t e^{-y(t)t} dC(t), \; B''(y) = -\int_0^\infty t^2 e^{-y(t)t} dC(t)$$

Duration and convexity 2

• Using the Taylor expansion we approximate the change in present value if the yield curve shifts:

$$B(y+\Deltaar{y})-B(y)pprox B'(y)\Deltaar{y}+rac{1}{2}B''(y)(\Deltaar{y})^2.$$

Define duration of the cash flow as

$$D = D(y) = -B'(y)/B(y)$$

• Define convexity of the cash flow as

$$C = C(y) = B''(y)/B(y)$$

Duration and convexity 3

• Rewrite the Taylor expansion in the following way:

$$rac{B(y+\Deltaar{y})-B(y)}{B(y)}pprox -D(y)\Deltaar{y}+rac{1}{2}C(y)(\Deltaar{y})^2$$

- In words: One can approximate the relative change in the PV of the cash flow when the yield curve is shifted uniformly by a small amount.
 - To first order: minus the yield change $\Delta \bar{y}$, times duration.
 - To second order: Same as above, plus the squared yield change times onehalf convexity.

Example PV Sensitivity 1

Consider a bond with face value of €100, maturity of 5 years and yearly coupons of 5%.

```
duration convexity 1 4.567348 21.98331
```

- We will value it under market assumptions (€110.07) and estimate the effect of a parallel yield perturbation:
 - increase of 1% 1st. order €105.04, 2nd order €105.16.
 - decrease of 1% 1st. order €115.09, 2nd order €115.22

Properties of duration and convexity 1

- The duration and convexity of a zero-coupon bond payable at time t are t and t^2 , independent of the yield.
- Duration and convexity decrease when the yield increases.
- For a given duration, convexity increases with the dispersion of the flow, because

$$rac{1}{B(y)} \int_0^\infty (t - D(y))^2 e^{-y(t)t} dC(t) = C(y) - D^2(y)$$

Dispersion, similar to variance

Properties of duration and convexity 2

- The duration/convexity approximation is an easy way to estimate the sensitivity of a cash flow's PV to small changes in the yield curve.
- The average duration/convexity of a portfolio is the **PV**-weighted average of the constituent durations/convexities. This makes those quantities easy to use.
- The duration/convexity approximation is **valid** only when there is a parallel shift in the yield curve.

Properties of duration and convexity 3

• The duration/convexity approximation does not tell us what change in the present value to expect, should different parts of the yield curve change by different amounts or even in different directions.

Different concepts of duration

- Macaulay Duration: The time weighted PV divided by the PV.
- Modified Duration: Macaulay Duration divided by 1+i(n)/n, where n is the compounding frequency.
- Effective Duration: Calculated by shocking the yield curve up and down by some change in PV.
- Dollar Duration: DD(y) = -B'(y) = B(y)D(y)
- Dollar Convexity: DC(y) = B''(y) = B(y)C(y)